X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_utils.py;h=803ec636520515543c873ecc59669475a0048a3c;hb=ee9ac102b8b392793466c13039a6e50b1e3c4c01;hp=29edf5b8a339b073e1426a12a98a6143e7af5069;hpb=667e0df9c07589c03616ad8cf42eebe5c86de50b;p=sage.d.git diff --git a/mjo/eja/eja_utils.py b/mjo/eja/eja_utils.py index 29edf5b..803ec63 100644 --- a/mjo/eja/eja_utils.py +++ b/mjo/eja/eja_utils.py @@ -10,12 +10,10 @@ def _all2list(x): if hasattr(x, 'list'): # Easy case... return x.list() - if hasattr(x, 'cartesian_factors'): - # If it's a formal cartesian product space element, then - # we also know what to do... - return sum(( x_i.list() for x_i in x ), []) else: - # But what if it's a tuple or something else? + # But what if it's a tuple or something else? This has to + # handle cartesian products of cartesian products, too; that's + # why it's recursive. return sum( map(_all2list,x), [] ) def _mat2vec(m): @@ -110,9 +108,6 @@ def gram_schmidt(v, inner_product=None): inner_product = lambda x,y: x.inner_product(y) norm = lambda x: inner_product(x,x).sqrt() - def proj(x,y): - return (inner_product(x,y)/inner_product(x,x))*x - v = list(v) # make a copy, don't clobber the input # Drop all zero vectors before we start. @@ -124,10 +119,26 @@ def gram_schmidt(v, inner_product=None): R = v[0].base_ring() + # Define a scaling operation that can be used on tuples. + # Oh and our "zero" needs to belong to the right space. + scale = lambda x,alpha: x*alpha + zero = v[0].parent().zero() + if hasattr(v[0], 'cartesian_factors'): + P = v[0].parent() + scale = lambda x,alpha: P(tuple( x_i*alpha + for x_i in x.cartesian_factors() )) + + + def proj(x,y): + return scale(x, (inner_product(x,y)/inner_product(x,x))) + # First orthogonalize... for i in range(1,len(v)): # Earlier vectors can be made into zero so we have to ignore them. - v[i] -= sum( proj(v[j],v[i]) for j in range(i) if not v[j].is_zero() ) + v[i] -= sum( (proj(v[j],v[i]) + for j in range(i) + if not v[j].is_zero() ), + zero ) # And now drop all zero vectors again if they were "orthogonalized out." v = [ v_i for v_i in v if not v_i.is_zero() ] @@ -136,6 +147,6 @@ def gram_schmidt(v, inner_product=None): # them here because then our subalgebra would have a bigger field # than the superalgebra. for i in range(len(v)): - v[i] = v[i] / norm(v[i]) + v[i] = scale(v[i], ~norm(v[i])) return v