X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_utils.py;h=38e75761dab0394f3aa5e6e3016aed7c0edebbc8;hb=6afd46c56380df3732f1dbe9e6ccc63ef77b6dd2;hp=29edf5b8a339b073e1426a12a98a6143e7af5069;hpb=667e0df9c07589c03616ad8cf42eebe5c86de50b;p=sage.d.git diff --git a/mjo/eja/eja_utils.py b/mjo/eja/eja_utils.py index 29edf5b..38e7576 100644 --- a/mjo/eja/eja_utils.py +++ b/mjo/eja/eja_utils.py @@ -6,16 +6,34 @@ def _all2list(x): r""" Flatten a vector, matrix, or cartesian product of those things into a long list. + + EXAMPLES:: + + sage: from mjo.eja.eja_utils import _all2list + sage: V1 = VectorSpace(QQ,2) + sage: V2 = MatrixSpace(QQ,2) + sage: x1 = V1([1,1]) + sage: x2 = V1([1,-1]) + sage: y1 = V2.one() + sage: y2 = V2([0,1,1,0]) + sage: _all2list((x1,y1)) + [1, 1, 1, 0, 0, 1] + sage: _all2list((x2,y2)) + [1, -1, 0, 1, 1, 0] + sage: M = cartesian_product([V1,V2]) + sage: _all2list(M((x1,y1))) + [1, 1, 1, 0, 0, 1] + sage: _all2list(M((x2,y2))) + [1, -1, 0, 1, 1, 0] + """ if hasattr(x, 'list'): # Easy case... return x.list() - if hasattr(x, 'cartesian_factors'): - # If it's a formal cartesian product space element, then - # we also know what to do... - return sum(( x_i.list() for x_i in x ), []) else: - # But what if it's a tuple or something else? + # But what if it's a tuple or something else? This has to + # handle cartesian products of cartesian products, too; that's + # why it's recursive. return sum( map(_all2list,x), [] ) def _mat2vec(m): @@ -94,6 +112,28 @@ def gram_schmidt(v, inner_product=None): [0 0], [1/2*sqrt(2) 0], [0 1] ] + It even works on Cartesian product spaces whose factors are vector + or matrix spaces:: + + sage: V1 = VectorSpace(AA,2) + sage: V2 = MatrixSpace(AA,2) + sage: M = cartesian_product([V1,V2]) + sage: x1 = V1([1,1]) + sage: x2 = V1([1,-1]) + sage: y1 = V2.one() + sage: y2 = V2([0,1,1,0]) + sage: z1 = M((x1,y1)) + sage: z2 = M((x2,y2)) + sage: def ip(a,b): + ....: return a[0].inner_product(b[0]) + (a[1]*b[1]).trace() + sage: U = gram_schmidt([z1,z2], inner_product=ip) + sage: ip(U[0],U[1]) + 0 + sage: ip(U[0],U[0]) + 1 + sage: ip(U[1],U[1]) + 1 + TESTS: Ensure that zero vectors don't get in the way:: @@ -104,15 +144,11 @@ def gram_schmidt(v, inner_product=None): sage: v = [v1,v2,v3] sage: len(gram_schmidt(v)) == 2 True - """ if inner_product is None: inner_product = lambda x,y: x.inner_product(y) norm = lambda x: inner_product(x,x).sqrt() - def proj(x,y): - return (inner_product(x,y)/inner_product(x,x))*x - v = list(v) # make a copy, don't clobber the input # Drop all zero vectors before we start. @@ -124,10 +160,26 @@ def gram_schmidt(v, inner_product=None): R = v[0].base_ring() + # Define a scaling operation that can be used on tuples. + # Oh and our "zero" needs to belong to the right space. + scale = lambda x,alpha: x*alpha + zero = v[0].parent().zero() + if hasattr(v[0], 'cartesian_factors'): + P = v[0].parent() + scale = lambda x,alpha: P(tuple( x_i*alpha + for x_i in x.cartesian_factors() )) + + + def proj(x,y): + return scale(x, (inner_product(x,y)/inner_product(x,x))) + # First orthogonalize... for i in range(1,len(v)): # Earlier vectors can be made into zero so we have to ignore them. - v[i] -= sum( proj(v[j],v[i]) for j in range(i) if not v[j].is_zero() ) + v[i] -= sum( (proj(v[j],v[i]) + for j in range(i) + if not v[j].is_zero() ), + zero ) # And now drop all zero vectors again if they were "orthogonalized out." v = [ v_i for v_i in v if not v_i.is_zero() ] @@ -136,6 +188,6 @@ def gram_schmidt(v, inner_product=None): # them here because then our subalgebra would have a bigger field # than the superalgebra. for i in range(len(v)): - v[i] = v[i] / norm(v[i]) + v[i] = scale(v[i], ~norm(v[i])) return v