X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_utils.py;h=29edf5b8a339b073e1426a12a98a6143e7af5069;hb=667e0df9c07589c03616ad8cf42eebe5c86de50b;hp=8f2d8f32b0dd2e2cf6e693166688d6be1f3ea999;hpb=f72c84ce3d46f2611a65417c72e9017754ec156f;p=sage.d.git diff --git a/mjo/eja/eja_utils.py b/mjo/eja/eja_utils.py index 8f2d8f3..29edf5b 100644 --- a/mjo/eja/eja_utils.py +++ b/mjo/eja/eja_utils.py @@ -1,12 +1,30 @@ +from sage.functions.other import sqrt +from sage.matrix.constructor import matrix from sage.modules.free_module_element import vector -from sage.rings.number_field.number_field import NumberField -from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing -from sage.rings.real_lazy import RLF + +def _all2list(x): + r""" + Flatten a vector, matrix, or cartesian product of those things + into a long list. + """ + if hasattr(x, 'list'): + # Easy case... + return x.list() + if hasattr(x, 'cartesian_factors'): + # If it's a formal cartesian product space element, then + # we also know what to do... + return sum(( x_i.list() for x_i in x ), []) + else: + # But what if it's a tuple or something else? + return sum( map(_all2list,x), [] ) def _mat2vec(m): return vector(m.base_ring(), m.list()) -def gram_schmidt(v): +def _vec2mat(v): + return matrix(v.base_ring(), sqrt(v.degree()), v.list()) + +def gram_schmidt(v, inner_product=None): """ Perform Gram-Schmidt on the list ``v`` which are assumed to be vectors over the same base ring. Returns a list of orthonormalized @@ -17,22 +35,65 @@ def gram_schmidt(v): sage: from mjo.eja.eja_utils import gram_schmidt - EXAMPLES:: + EXAMPLES: + + The usual inner-product and norm are default:: sage: v1 = vector(QQ,(1,2,3)) sage: v2 = vector(QQ,(1,-1,6)) sage: v3 = vector(QQ,(2,1,-1)) sage: v = [v1,v2,v3] sage: u = gram_schmidt(v) - sage: [ u_i.inner_product(u_i).sqrt() == 1 for u_i in u ] + sage: all( u_i.inner_product(u_i).sqrt() == 1 for u_i in u ) True - sage: u[0].inner_product(u[1]) == 0 + sage: bool(u[0].inner_product(u[1]) == 0) True - sage: u[0].inner_product(u[2]) == 0 + sage: bool(u[0].inner_product(u[2]) == 0) True - sage: u[1].inner_product(u[2]) == 0 + sage: bool(u[1].inner_product(u[2]) == 0) True + + But if you supply a custom inner product, the result is + orthonormal with respect to that (and not the usual inner + product):: + + sage: v1 = vector(QQ,(1,2,3)) + sage: v2 = vector(QQ,(1,-1,6)) + sage: v3 = vector(QQ,(2,1,-1)) + sage: v = [v1,v2,v3] + sage: B = matrix(QQ, [ [6, 4, 2], + ....: [4, 5, 4], + ....: [2, 4, 9] ]) + sage: ip = lambda x,y: (B*x).inner_product(y) + sage: norm = lambda x: ip(x,x) + sage: u = gram_schmidt(v,ip) + sage: all( norm(u_i) == 1 for u_i in u ) + True + sage: ip(u[0],u[1]).is_zero() + True + sage: ip(u[0],u[2]).is_zero() + True + sage: ip(u[1],u[2]).is_zero() + True + + This Gram-Schmidt routine can be used on matrices as well, so long + as an appropriate inner-product is provided:: + + sage: E11 = matrix(QQ, [ [1,0], + ....: [0,0] ]) + sage: E12 = matrix(QQ, [ [0,1], + ....: [1,0] ]) + sage: E22 = matrix(QQ, [ [0,0], + ....: [0,1] ]) + sage: I = matrix.identity(QQ,2) + sage: trace_ip = lambda X,Y: (X*Y).trace() + sage: gram_schmidt([E11,E12,I,E22], inner_product=trace_ip) + [ + [1 0] [ 0 1/2*sqrt(2)] [0 0] + [0 0], [1/2*sqrt(2) 0], [0 1] + ] + TESTS: Ensure that zero vectors don't get in the way:: @@ -45,8 +106,12 @@ def gram_schmidt(v): True """ + if inner_product is None: + inner_product = lambda x,y: x.inner_product(y) + norm = lambda x: inner_product(x,x).sqrt() + def proj(x,y): - return (y.inner_product(x)/x.inner_product(x))*x + return (inner_product(x,y)/inner_product(x,x))*x v = list(v) # make a copy, don't clobber the input @@ -60,36 +125,17 @@ def gram_schmidt(v): R = v[0].base_ring() # First orthogonalize... - for i in xrange(1,len(v)): + for i in range(1,len(v)): # Earlier vectors can be made into zero so we have to ignore them. v[i] -= sum( proj(v[j],v[i]) for j in range(i) if not v[j].is_zero() ) # And now drop all zero vectors again if they were "orthogonalized out." v = [ v_i for v_i in v if not v_i.is_zero() ] - # Now pretend to normalize, building a new ring R that contains - # all of the necessary square roots. - norms_squared = [0]*len(v) - - for i in xrange(len(v)): - norms_squared[i] = v[i].inner_product(v[i]) - ns = [norms_squared[i].numerator(), norms_squared[i].denominator()] - - # Do the numerator and denominator separately so that we - # adjoin e.g. sqrt(2) and sqrt(3) instead of sqrt(2/3). - for j in xrange(len(ns)): - PR = PolynomialRing(R, 'z') - z = PR.gen() - p = z**2 - ns[j] - if p.is_irreducible(): - R = NumberField(p, - 'sqrt' + str(ns[j]), - embedding=RLF(ns[j]).sqrt()) - - # When we're done, we have to change every element's ring to the - # extension that we wound up with, and then normalize it (which - # should work, since "R" contains its norm now). - for i in xrange(len(v)): - v[i] = v[i].change_ring(R) / R(norms_squared[i]).sqrt() + # Just normalize. If the algebra is missing the roots, we can't add + # them here because then our subalgebra would have a bigger field + # than the superalgebra. + for i in range(len(v)): + v[i] = v[i] / norm(v[i]) return v