X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_utils.py;h=2402d9f0e5f6d1b174690688b8f9b2d7f17eba61;hb=a339e89c225bb46379332ecb8b0c50b918d34ac6;hp=38e75761dab0394f3aa5e6e3016aed7c0edebbc8;hpb=839b90b46009aeb42d2615884972949664d154ad;p=sage.d.git diff --git a/mjo/eja/eja_utils.py b/mjo/eja/eja_utils.py index 38e7576..2402d9f 100644 --- a/mjo/eja/eja_utils.py +++ b/mjo/eja/eja_utils.py @@ -2,14 +2,67 @@ from sage.functions.other import sqrt from sage.matrix.constructor import matrix from sage.modules.free_module_element import vector +def _scale(x, alpha): + r""" + Scale the vector, matrix, or cartesian-product-of-those-things + ``x`` by ``alpha``. + + This works around the inability to scale certain elements of + Cartesian product spaces, as reported in + + https://trac.sagemath.org/ticket/31435 + + ..WARNING: + + This will do the wrong thing if you feed it a tuple or list. + + SETUP:: + + sage: from mjo.eja.eja_utils import _scale + + EXAMPLES:: + + sage: v = vector(QQ, (1,2,3)) + sage: _scale(v,2) + (2, 4, 6) + sage: m = matrix(QQ, [[1,2],[3,4]]) + sage: M = cartesian_product([m.parent(), m.parent()]) + sage: _scale(M((m,m)), 2) + ([2 4] + [6 8], [2 4] + [6 8]) + + """ + if hasattr(x, 'cartesian_factors'): + P = x.parent() + return P(tuple( _scale(x_i, alpha) + for x_i in x.cartesian_factors() )) + else: + return x*alpha + + def _all2list(x): r""" Flatten a vector, matrix, or cartesian product of those things into a long list. - EXAMPLES:: + If the entries of the matrix themselves belong to a real vector + space (such as the complex numbers which can be thought of as + pairs of real numbers), they will also be expanded in vector form + and flattened into the list. + + SETUP:: sage: from mjo.eja.eja_utils import _all2list + sage: from mjo.octonions import Octonions, OctonionMatrixAlgebra + + EXAMPLES:: + + sage: _all2list([[1]]) + [1] + + :: + sage: V1 = VectorSpace(QQ,2) sage: V2 = MatrixSpace(QQ,2) sage: x1 = V1([1,1]) @@ -26,15 +79,45 @@ def _all2list(x): sage: _all2list(M((x2,y2))) [1, -1, 0, 1, 1, 0] + :: + + sage: _all2list(Octonions().one()) + [1, 0, 0, 0, 0, 0, 0, 0] + sage: _all2list(OctonionMatrixAlgebra(1).one()) + [1, 0, 0, 0, 0, 0, 0, 0] + + :: + + sage: V1 = VectorSpace(QQ,2) + sage: V2 = OctonionMatrixAlgebra(1,field=QQ) + sage: C = cartesian_product([V1,V2]) + sage: x1 = V1([3,4]) + sage: y1 = V2.one() + sage: _all2list(C( (x1,y1) )) + [3, 4, 1, 0, 0, 0, 0, 0, 0, 0] + """ - if hasattr(x, 'list'): - # Easy case... - return x.list() - else: - # But what if it's a tuple or something else? This has to - # handle cartesian products of cartesian products, too; that's - # why it's recursive. - return sum( map(_all2list,x), [] ) + if hasattr(x, 'to_vector'): + # This works on matrices of e.g. octonions directly, without + # first needing to convert them to a list of octonions and + # then recursing down into the list. It also avoids the wonky + # list(x) when x is an element of a CFM. I don't know what it + # returns but it aint the coordinates. This will fall through + # to the iterable case the next time around. + return _all2list(x.to_vector()) + + try: + xl = list(x) + except TypeError: # x is not iterable + return [x] + + if xl == [x]: + # Avoid the retardation of list(QQ(1)) == [1]. + return [x] + + return sum(list( map(_all2list, xl) ), []) + + def _mat2vec(m): return vector(m.base_ring(), m.list()) @@ -160,18 +243,16 @@ def gram_schmidt(v, inner_product=None): R = v[0].base_ring() - # Define a scaling operation that can be used on tuples. - # Oh and our "zero" needs to belong to the right space. - scale = lambda x,alpha: x*alpha + # Our "zero" needs to belong to the right space for sum() to work. zero = v[0].parent().zero() - if hasattr(v[0], 'cartesian_factors'): - P = v[0].parent() - scale = lambda x,alpha: P(tuple( x_i*alpha - for x_i in x.cartesian_factors() )) + sc = lambda x,a: a*x + if hasattr(v[0], 'cartesian_factors'): + # Only use the slow implementation if necessary. + sc = _scale def proj(x,y): - return scale(x, (inner_product(x,y)/inner_product(x,x))) + return sc(x, (inner_product(x,y)/inner_product(x,x))) # First orthogonalize... for i in range(1,len(v)): @@ -188,6 +269,6 @@ def gram_schmidt(v, inner_product=None): # them here because then our subalgebra would have a bigger field # than the superalgebra. for i in range(len(v)): - v[i] = scale(v[i], ~norm(v[i])) + v[i] = sc(v[i], ~norm(v[i])) return v