X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_subalgebra.py;h=fee718b14ff32d96a00e7b8c9f1e8ed09066d733;hb=f72c84ce3d46f2611a65417c72e9017754ec156f;hp=7451e47bdbbbf2d58ce598aa3bb4e17ec42d5dae;hpb=ec7dbfb6ce0054f55280412e43870b4019abc40c;p=sage.d.git diff --git a/mjo/eja/eja_subalgebra.py b/mjo/eja/eja_subalgebra.py index 7451e47..fee718b 100644 --- a/mjo/eja/eja_subalgebra.py +++ b/mjo/eja/eja_subalgebra.py @@ -2,7 +2,7 @@ from sage.matrix.constructor import matrix from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement - +from mjo.eja.eja_utils import gram_schmidt class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement): """ @@ -71,43 +71,111 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclideanJordanAlgebra): """ The subalgebra of an EJA generated by a single element. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA, + ....: JordanSpinEJA) + + TESTS: + + Ensure that our generator names don't conflict with the superalgebra:: + + sage: J = JordanSpinEJA(3) + sage: J.one().subalgebra_generated_by().gens() + (f0,) + sage: J = JordanSpinEJA(3, prefix='f') + sage: J.one().subalgebra_generated_by().gens() + (g0,) + sage: J = JordanSpinEJA(3, prefix='b') + sage: J.one().subalgebra_generated_by().gens() + (c0,) + + Ensure that we can find subalgebras of subalgebras:: + + sage: A = ComplexHermitianEJA(3).one().subalgebra_generated_by() + sage: B = A.one().subalgebra_generated_by() + sage: B.dimension() + 1 + """ - def __init__(self, elt): - superalgebra = elt.parent() - - # First compute the vector subspace spanned by the powers of - # the given element. - V = superalgebra.vector_space() - superalgebra_basis = [superalgebra.one()] - basis_vectors = [superalgebra.one().to_vector()] - W = V.span_of_basis(basis_vectors) - for exponent in range(1, V.dimension()): - new_power = elt**exponent - basis_vectors.append( new_power.to_vector() ) - try: - W = V.span_of_basis(basis_vectors) - superalgebra_basis.append( new_power ) - except ValueError: - # Vectors weren't independent; bail and keep the - # last subspace that worked. - break - - # Make the basis hashable for UniqueRepresentation. - superalgebra_basis = tuple(superalgebra_basis) - - # Now figure out the entries of the right-multiplication - # matrix for the successive basis elements b0, b1,... of - # that subspace. - field = superalgebra.base_ring() + def __init__(self, elt, orthonormalize_basis): + self._superalgebra = elt.parent() + category = self._superalgebra.category().Associative() + V = self._superalgebra.vector_space() + field = self._superalgebra.base_ring() + + # A half-assed attempt to ensure that we don't collide with + # the superalgebra's prefix (ignoring the fact that there + # could be super-superelgrbas in scope). If possible, we + # try to "increment" the parent algebra's prefix, although + # this idea goes out the window fast because some prefixen + # are off-limits. + prefixen = [ 'f', 'g', 'h', 'a', 'b', 'c', 'd' ] + try: + prefix = prefixen[prefixen.index(self._superalgebra.prefix()) + 1] + except ValueError: + prefix = prefixen[0] + + if elt.is_zero(): + # Short circuit because 0^0 == 1 is going to make us + # think we have a one-dimensional algebra otherwise. + natural_basis = tuple() + mult_table = tuple() + rank = 0 + self._vector_space = V.zero_subspace() + self._superalgebra_basis = [] + fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra, + self) + return fdeja.__init__(field, + mult_table, + rank, + prefix=prefix, + category=category, + natural_basis=natural_basis) + + + # This list is guaranteed to contain all independent powers, + # because it's the maximal set of powers that could possibly + # be independent (by a dimension argument). + powers = [ elt**k for k in range(V.dimension()) ] + + if orthonormalize_basis == False: + # In this case, we just need to figure out which elements + # of the "powers" list are redundant... First compute the + # vector subspace spanned by the powers of the given + # element. + power_vectors = [ p.to_vector() for p in powers ] + + # Figure out which powers form a linearly-independent set. + ind_rows = matrix(field, power_vectors).pivot_rows() + + # Pick those out of the list of all powers. + superalgebra_basis = tuple(map(powers.__getitem__, ind_rows)) + + # If our superalgebra is a subalgebra of something else, then + # these vectors won't have the right coordinates for + # V.span_of_basis() unless we use V.from_vector() on them. + basis_vectors = map(power_vectors.__getitem__, ind_rows) + else: + # If we're going to orthonormalize the basis anyway, we + # might as well just do Gram-Schmidt on the whole list of + # powers. The redundant ones will get zero'd out. + superalgebra_basis = gram_schmidt(powers) + basis_vectors = [ b.to_vector() for b in superalgebra_basis ] + + W = V.span_of_basis( V.from_vector(v) for v in basis_vectors ) n = len(superalgebra_basis) mult_table = [[W.zero() for i in range(n)] for j in range(n)] for i in range(n): for j in range(n): product = superalgebra_basis[i]*superalgebra_basis[j] - mult_table[i][j] = W.coordinate_vector(product.to_vector()) - - # TODO: We'll have to redo this and make it unique again... - prefix = 'f' + # product.to_vector() might live in a vector subspace + # if our parent algebra is already a subalgebra. We + # use V.from_vector() to make it "the right size" in + # that case. + product_vector = V.from_vector(product.to_vector()) + mult_table[i][j] = W.coordinate_vector(product_vector) # The rank is the highest possible degree of a minimal # polynomial, and is bounded above by the dimension. We know @@ -117,11 +185,10 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide # its rank too. rank = W.dimension() - category = superalgebra.category().Associative() natural_basis = tuple( b.natural_representation() for b in superalgebra_basis ) - self._superalgebra = superalgebra + self._vector_space = W self._superalgebra_basis = superalgebra_basis @@ -135,6 +202,30 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide natural_basis=natural_basis) + def _a_regular_element(self): + """ + Override the superalgebra method to return the one + regular element that is sure to exist in this + subalgebra, namely the element that generated it. + + SETUP:: + + sage: from mjo.eja.eja_algebra import random_eja + + TESTS:: + + sage: set_random_seed() + sage: J = random_eja().random_element().subalgebra_generated_by() + sage: J._a_regular_element().is_regular() + True + + """ + if self.dimension() == 0: + return self.zero() + else: + return self.monomial(1) + + def _element_constructor_(self, elt): """ Construct an element of this subalgebra from the given one. @@ -157,6 +248,12 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide :: """ + if elt == 0: + # Just as in the superalgebra class, we need to hack + # this special case to ensure that random_element() can + # coerce a ring zero into the algebra. + return self.zero() + if elt in self.superalgebra(): coords = self.vector_space().coordinate_vector(elt.to_vector()) return self.from_vector(coords) @@ -215,7 +312,22 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide sage: actual == expected True """ - return self.monomial(self.one_basis()) + if self.dimension() == 0: + return self.zero() + else: + return self.monomial(self.one_basis()) + + + def natural_basis_space(self): + """ + Return the natural basis space of this algebra, which is identical + to that of its superalgebra. + + This is correct "by definition," and avoids a mismatch when the + subalgebra is trivial (with no natural basis to infer anything + from) and the parent is not. + """ + return self.superalgebra().natural_basis_space() def superalgebra(self): @@ -235,20 +347,20 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide EXAMPLES:: sage: J = RealSymmetricEJA(3) - sage: x = sum( i*J.gens()[i] for i in range(6) ) + sage: x = J.monomial(0) + 2*J.monomial(2) + 5*J.monomial(5) sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x) sage: K.vector_space() - Vector space of degree 6 and dimension 3 over Rational Field + Vector space of degree 6 and dimension 3 over... User basis matrix: [ 1 0 1 0 0 1] - [ 0 1 2 3 4 5] - [10 14 21 19 31 50] + [ 1 0 2 0 0 5] + [ 1 0 4 0 0 25] sage: (x^0).to_vector() (1, 0, 1, 0, 0, 1) sage: (x^1).to_vector() - (0, 1, 2, 3, 4, 5) + (1, 0, 2, 0, 0, 5) sage: (x^2).to_vector() - (10, 14, 21, 19, 31, 50) + (1, 0, 4, 0, 0, 25) """ return self._vector_space