X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_subalgebra.py;h=c43e53f2b030ed920e6cc22d10c3097c4b704cec;hb=c75f59725b9cfd923256d83dc3817a0f5f42d638;hp=5e782cf4a69b13d0d6c2e36beb5b190d81ddb3b4;hpb=40e1b7a4beee7218ec3131efc2111f3f073184c6;p=sage.d.git diff --git a/mjo/eja/eja_subalgebra.py b/mjo/eja/eja_subalgebra.py index 5e782cf..c43e53f 100644 --- a/mjo/eja/eja_subalgebra.py +++ b/mjo/eja/eja_subalgebra.py @@ -71,6 +71,25 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclideanJordanAlgebra): """ The subalgebra of an EJA generated by a single element. + + SETUP:: + + sage: from mjo.eja.eja_algebra import JordanSpinEJA + + TESTS: + + Ensure that our generator names don't conflict with the superalgebra:: + + sage: J = JordanSpinEJA(3) + sage: J.one().subalgebra_generated_by().gens() + (f0,) + sage: J = JordanSpinEJA(3, prefix='f') + sage: J.one().subalgebra_generated_by().gens() + (g0,) + sage: J = JordanSpinEJA(3, prefix='b') + sage: J.one().subalgebra_generated_by().gens() + (c0,) + """ def __init__(self, elt): superalgebra = elt.parent() @@ -99,31 +118,24 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide # matrix for the successive basis elements b0, b1,... of # that subspace. field = superalgebra.base_ring() - mult_table = [] - for b_right in superalgebra_basis: - b_right_rows = [] - # The first row of the right-multiplication matrix by - # b1 is what we get if we apply that matrix to b1. The - # second row of the right multiplication matrix by b1 - # is what we get when we apply that matrix to b2... - # - # IMPORTANT: this assumes that all vectors are COLUMN - # vectors, unlike our superclass (which uses row vectors). - for b_left in superalgebra_basis: - # Multiply in the original EJA, but then get the - # coordinates from the subalgebra in terms of its - # basis. - this_row = W.coordinates((b_left*b_right).to_vector()) - b_right_rows.append(this_row) - b_right_matrix = matrix(field, b_right_rows) - mult_table.append(b_right_matrix) - - for m in mult_table: - m.set_immutable() - mult_table = tuple(mult_table) - - # TODO: We'll have to redo this and make it unique again... - prefix = 'f' + n = len(superalgebra_basis) + mult_table = [[W.zero() for i in range(n)] for j in range(n)] + for i in range(n): + for j in range(n): + product = superalgebra_basis[i]*superalgebra_basis[j] + mult_table[i][j] = W.coordinate_vector(product.to_vector()) + + # A half-assed attempt to ensure that we don't collide with + # the superalgebra's prefix (ignoring the fact that there + # could be super-superelgrbas in scope). If possible, we + # try to "increment" the parent algebra's prefix, although + # this idea goes out the window fast because some prefixen + # are off-limits. + prefixen = [ 'f', 'g', 'h', 'a', 'b', 'c', 'd' ] + try: + prefix = prefixen[prefixen.index(superalgebra.prefix()) + 1] + except ValueError: + prefix = prefixen[0] # The rank is the highest possible degree of a minimal # polynomial, and is bounded above by the dimension. We know @@ -173,11 +185,73 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide :: """ + if elt == 0: + # Just as in the superalgebra class, we need to hack + # this special case to ensure that random_element() can + # coerce a ring zero into the algebra. + return self.zero() + if elt in self.superalgebra(): coords = self.vector_space().coordinate_vector(elt.to_vector()) return self.from_vector(coords) + def one_basis(self): + """ + Return the basis-element-index of this algebra's unit element. + """ + return 0 + + + def one(self): + """ + Return the multiplicative identity element of this algebra. + + The superclass method computes the identity element, which is + beyond overkill in this case: the algebra identity should be our + first basis element. We implement this via :meth:`one_basis` + because that method can optionally be used by other parts of the + category framework. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA, + ....: random_eja) + + EXAMPLES:: + + sage: J = RealCartesianProductEJA(5) + sage: J.one() + e0 + e1 + e2 + e3 + e4 + sage: x = sum(J.gens()) + sage: A = x.subalgebra_generated_by() + sage: A.one() + f0 + sage: A.one().superalgebra_element() + e0 + e1 + e2 + e3 + e4 + + TESTS: + + The identity element acts like the identity:: + + sage: set_random_seed() + sage: J = random_eja().random_element().subalgebra_generated_by() + sage: x = J.random_element() + sage: J.one()*x == x and x*J.one() == x + True + + The matrix of the unit element's operator is the identity:: + + sage: set_random_seed() + sage: J = random_eja().random_element().subalgebra_generated_by() + sage: actual = J.one().operator().matrix() + sage: expected = matrix.identity(J.base_ring(), J.dimension()) + sage: actual == expected + True + """ + return self.monomial(self.one_basis()) + + def superalgebra(self): """ Return the superalgebra that this algebra was generated from.