X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_subalgebra.py;h=c372e50072c73a50281dd45d07eec62a62848277;hb=1e9700cdd04434465ffcad148d078f7fa361e426;hp=0f641416366ef7ee72d4703e070c69e2d60e30a9;hpb=c16c11d5b4cd015b6d7516a175a92f46e03bd2d7;p=sage.d.git diff --git a/mjo/eja/eja_subalgebra.py b/mjo/eja/eja_subalgebra.py index 0f64141..c372e50 100644 --- a/mjo/eja/eja_subalgebra.py +++ b/mjo/eja/eja_subalgebra.py @@ -2,7 +2,6 @@ from sage.matrix.constructor import matrix from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement -from mjo.eja.eja_utils import gram_schmidt class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement): """ @@ -132,16 +131,17 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide # because it's the maximal set of powers that could possibly # be independent (by a dimension argument). powers = [ elt**k for k in range(V.dimension()) ] + power_vectors = [ p.to_vector() for p in powers ] + P = matrix(field, power_vectors) if orthonormalize_basis == False: # In this case, we just need to figure out which elements # of the "powers" list are redundant... First compute the # vector subspace spanned by the powers of the given # element. - power_vectors = [ p.to_vector() for p in powers ] # Figure out which powers form a linearly-independent set. - ind_rows = matrix(field, power_vectors).pivot_rows() + ind_rows = P.pivot_rows() # Pick those out of the list of all powers. superalgebra_basis = tuple(map(powers.__getitem__, ind_rows)) @@ -153,9 +153,16 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide else: # If we're going to orthonormalize the basis anyway, we # might as well just do Gram-Schmidt on the whole list of - # powers. The redundant ones will get zero'd out. - superalgebra_basis = gram_schmidt(powers) - basis_vectors = [ b.to_vector() for b in superalgebra_basis ] + # powers. The redundant ones will get zero'd out. If this + # looks like a roundabout way to orthonormalize, it is. + # But converting everything from algebra elements to vectors + # to matrices and then back again turns out to be about + # as fast as reimplementing our own Gram-Schmidt that + # works in an EJA. + G,_ = P.gram_schmidt(orthonormal=True) + basis_vectors = [ g for g in G.rows() if not g.is_zero() ] + superalgebra_basis = [ self._superalgebra.from_vector(b) + for b in basis_vectors ] W = V.span_of_basis( V.from_vector(v) for v in basis_vectors ) n = len(superalgebra_basis)