X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_subalgebra.py;h=ac77f22a691e7cc04138e34cae46f148909de0f8;hb=98da0ce1d1102057e34646889c10dfa01fa9faec;hp=b07f7e25ee599322cad6ec0d94bdd23bf0a964fe;hpb=008446f3a13b4fc117e1adfbc66f86784a6495c9;p=sage.d.git diff --git a/mjo/eja/eja_subalgebra.py b/mjo/eja/eja_subalgebra.py index b07f7e2..ac77f22 100644 --- a/mjo/eja/eja_subalgebra.py +++ b/mjo/eja/eja_subalgebra.py @@ -85,7 +85,28 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda SETUP:: sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA, - ....: JordanSpinEJA) + ....: JordanSpinEJA, + ....: RealSymmetricEJA) + sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra + + EXAMPLES: + + The following Peirce subalgebras of the 2-by-2 real symmetric + matrices do not contain the superalgebra's identity element:: + + sage: J = RealSymmetricEJA(2) + sage: E11 = matrix(AA, [ [1,0], + ....: [0,0] ]) + sage: E22 = matrix(AA, [ [0,0], + ....: [0,1] ]) + sage: K1 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E11),)) + sage: K1.one().natural_representation() + [1 0] + [0 0] + sage: K2 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E22),)) + sage: K2.one().natural_representation() + [0 0] + [0 1] TESTS: @@ -177,11 +198,16 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda EXAMPLES:: sage: J = RealSymmetricEJA(3) - sage: x = sum( i*J.gens()[i] for i in range(6) ) - sage: basis = tuple( x^k for k in range(J.rank()) ) - sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis) - sage: [ K(x^k) for k in range(J.rank()) ] - [f0, f1, f2] + sage: X = matrix(AA, [ [0,0,1], + ....: [0,1,0], + ....: [1,0,0] ]) + sage: x = J(X) + sage: basis = ( x, x^2 ) # x^2 is the identity matrix + sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J, basis) + sage: K(J.one()) + f1 + sage: K(J.one() + x) + f0 + f1 :: @@ -193,84 +219,6 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda return self.from_vector(coords) - def one(self): - """ - Return the multiplicative identity element of this algebra. - - The superclass method computes the identity element, which is - beyond overkill in this case: the superalgebra identity - restricted to this algebra is its identity. Note that we can't - count on the first basis element being the identity -- it migth - have been scaled if we orthonormalized the basis. - - SETUP:: - - sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA, - ....: random_eja) - - EXAMPLES:: - - sage: J = RealCartesianProductEJA(5) - sage: J.one() - e0 + e1 + e2 + e3 + e4 - sage: x = sum(J.gens()) - sage: A = x.subalgebra_generated_by() - sage: A.one() - f0 - sage: A.one().superalgebra_element() - e0 + e1 + e2 + e3 + e4 - - TESTS: - - The identity element acts like the identity over the rationals:: - - sage: set_random_seed() - sage: x = random_eja().random_element() - sage: A = x.subalgebra_generated_by() - sage: x = A.random_element() - sage: A.one()*x == x and x*A.one() == x - True - - The identity element acts like the identity over the algebraic - reals with an orthonormal basis:: - - sage: set_random_seed() - sage: x = random_eja(AA).random_element() - sage: A = x.subalgebra_generated_by(orthonormalize_basis=True) - sage: x = A.random_element() - sage: A.one()*x == x and x*A.one() == x - True - - The matrix of the unit element's operator is the identity over - the rationals:: - - sage: set_random_seed() - sage: x = random_eja().random_element() - sage: A = x.subalgebra_generated_by() - sage: actual = A.one().operator().matrix() - sage: expected = matrix.identity(A.base_ring(), A.dimension()) - sage: actual == expected - True - - The matrix of the unit element's operator is the identity over - the algebraic reals with an orthonormal basis:: - - sage: set_random_seed() - sage: x = random_eja(AA).random_element() - sage: A = x.subalgebra_generated_by(orthonormalize_basis=True) - sage: actual = A.one().operator().matrix() - sage: expected = matrix.identity(A.base_ring(), A.dimension()) - sage: actual == expected - True - - """ - if self.dimension() == 0: - return self.zero() - else: - sa_one = self.superalgebra().one().to_vector() - sa_coords = self.vector_space().coordinate_vector(sa_one) - return self.from_vector(sa_coords) - def natural_basis_space(self): """ @@ -301,21 +249,25 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda EXAMPLES:: sage: J = RealSymmetricEJA(3) - sage: x = J.monomial(0) + 2*J.monomial(2) + 5*J.monomial(5) - sage: basis = (x^0, x^1, x^2) + sage: E11 = matrix(ZZ, [ [1,0,0], + ....: [0,0,0], + ....: [0,0,0] ]) + sage: E22 = matrix(ZZ, [ [0,0,0], + ....: [0,1,0], + ....: [0,0,0] ]) + sage: b1 = J(E11) + sage: b2 = J(E22) + sage: basis = (b1, b2) sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis) sage: K.vector_space() - Vector space of degree 6 and dimension 3 over... + Vector space of degree 6 and dimension 2 over... User basis matrix: - [ 1 0 1 0 0 1] - [ 1 0 2 0 0 5] - [ 1 0 4 0 0 25] - sage: (x^0).to_vector() - (1, 0, 1, 0, 0, 1) - sage: (x^1).to_vector() - (1, 0, 2, 0, 0, 5) - sage: (x^2).to_vector() - (1, 0, 4, 0, 0, 25) + [1 0 0 0 0 0] + [0 0 1 0 0 0] + sage: b1.to_vector() + (1, 0, 0, 0, 0, 0) + sage: b2.to_vector() + (0, 0, 1, 0, 0, 0) """ return self._vector_space