X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_operator.py;h=ee33dbf53b36fd9851d31169d5699041f460328e;hb=99ca9f8c24194ad6be7b8e325575e58b53429c2b;hp=41d68560524e9394a97dc6ff3ecbaf19e27cd06a;hpb=f18fd7071b8e8165c3388cd408da11432edec806;p=sage.d.git diff --git a/mjo/eja/eja_operator.py b/mjo/eja/eja_operator.py index 41d6856..ee33dbf 100644 --- a/mjo/eja/eja_operator.py +++ b/mjo/eja/eja_operator.py @@ -117,13 +117,13 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): sage: from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator sage: from mjo.eja.eja_algebra import ( ....: JordanSpinEJA, - ....: RealCartesianProductEJA, + ....: HadamardEJA, ....: RealSymmetricEJA) EXAMPLES:: sage: J1 = JordanSpinEJA(3) - sage: J2 = RealCartesianProductEJA(2) + sage: J2 = HadamardEJA(2) sage: J3 = RealSymmetricEJA(1) sage: mat1 = matrix(QQ, [[1,2,3], ....: [4,5,6]]) @@ -420,14 +420,13 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): sage: idJ.inverse() == idJ True - The zero operator is never invertible:: + The inverse of the inverse is the operator we started with:: sage: set_random_seed() - sage: J = random_eja() - sage: J.zero().operator().inverse() - Traceback (most recent call last): - ... - ZeroDivisionError: input matrix must be nonsingular + sage: x = random_eja().random_element() + sage: L = x.operator() + sage: not L.is_invertible() or (L.inverse().inverse() == L) + True """ return ~self @@ -439,7 +438,9 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): SETUP:: - sage: from mjo.eja.eja_algebra import RealSymmetricEJA, random_eja + sage: from mjo.eja.eja_algebra import (RealSymmetricEJA, + ....: TrivialEJA, + ....: random_eja) EXAMPLES:: @@ -454,6 +455,12 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): sage: x.operator().is_invertible() True + The zero operator is invertible in a trivial algebra:: + + sage: J = TrivialEJA() + sage: J.zero().operator().is_invertible() + True + TESTS: The identity operator is always invertible:: @@ -463,11 +470,11 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): sage: J.one().operator().is_invertible() True - The zero operator is never invertible:: + The zero operator is never invertible in a nontrivial algebra:: sage: set_random_seed() sage: J = random_eja() - sage: J.zero().operator().is_invertible() + sage: not J.is_trivial() and J.zero().operator().is_invertible() False """ @@ -524,6 +531,11 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): Return the spectral decomposition of this operator as a list of (eigenvalue, orthogonal projector) pairs. + This is the unique spectral decomposition, up to the order of + the projection operators, with distinct eigenvalues. So, the + projections are generally onto subspaces of dimension greater + than one. + SETUP:: sage: from mjo.eja.eja_algebra import RealSymmetricEJA @@ -547,15 +559,9 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): True sage: P1^2 == P1 True - sage: c0 = P0(A.one()) - sage: c1 = P1(A.one()) - sage: c0.inner_product(c1) == 0 - True - sage: c0 + c1 == A.one() - True - sage: c0.is_idempotent() + sage: P0*P1 == A.zero().operator() True - sage: c1.is_idempotent() + sage: P1*P0 == A.zero().operator() True """ @@ -576,4 +582,4 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): self.codomain(), mat) projectors.append(Pi) - return zip(eigenvalues, projectors) + return list(zip(eigenvalues, projectors))