X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_operator.py;h=ee33dbf53b36fd9851d31169d5699041f460328e;hb=99ca9f8c24194ad6be7b8e325575e58b53429c2b;hp=0e898b59fb9d8a99090da6f4baec3e49df51d9cd;hpb=bf51162c586555866d19b90a7444bb02bd1c0727;p=sage.d.git diff --git a/mjo/eja/eja_operator.py b/mjo/eja/eja_operator.py index 0e898b5..ee33dbf 100644 --- a/mjo/eja/eja_operator.py +++ b/mjo/eja/eja_operator.py @@ -117,13 +117,13 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): sage: from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator sage: from mjo.eja.eja_algebra import ( ....: JordanSpinEJA, - ....: RealCartesianProductEJA, + ....: HadamardEJA, ....: RealSymmetricEJA) EXAMPLES:: sage: J1 = JordanSpinEJA(3) - sage: J2 = RealCartesianProductEJA(2) + sage: J2 = HadamardEJA(2) sage: J3 = RealSymmetricEJA(1) sage: mat1 = matrix(QQ, [[1,2,3], ....: [4,5,6]]) @@ -383,6 +383,104 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): return (self + (-other)) + def inverse(self): + """ + Return the inverse of this operator, if it exists. + + The reason this method is not simply an alias for the built-in + :meth:`__invert__` is that the built-in inversion is a bit magic + since it's intended to be a unary operator. If we alias ``inverse`` + to ``__invert__``, then we wind up having to call e.g. ``A.inverse`` + without parentheses. + + SETUP:: + + sage: from mjo.eja.eja_algebra import RealSymmetricEJA, random_eja + + EXAMPLES:: + + sage: J = RealSymmetricEJA(2) + sage: x = sum(J.gens()) + sage: x.operator().inverse().matrix() + [3/2 -1 1/2] + [ -1 2 -1] + [1/2 -1 3/2] + sage: x.operator().matrix().inverse() + [3/2 -1 1/2] + [ -1 2 -1] + [1/2 -1 3/2] + + TESTS: + + The identity operator is its own inverse:: + + sage: set_random_seed() + sage: J = random_eja() + sage: idJ = J.one().operator() + sage: idJ.inverse() == idJ + True + + The inverse of the inverse is the operator we started with:: + + sage: set_random_seed() + sage: x = random_eja().random_element() + sage: L = x.operator() + sage: not L.is_invertible() or (L.inverse().inverse() == L) + True + + """ + return ~self + + + def is_invertible(self): + """ + Return whether or not this operator is invertible. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (RealSymmetricEJA, + ....: TrivialEJA, + ....: random_eja) + + EXAMPLES:: + + sage: J = RealSymmetricEJA(2) + sage: x = sum(J.gens()) + sage: x.operator().matrix() + [ 1 1/2 0] + [1/2 1 1/2] + [ 0 1/2 1] + sage: x.operator().matrix().is_invertible() + True + sage: x.operator().is_invertible() + True + + The zero operator is invertible in a trivial algebra:: + + sage: J = TrivialEJA() + sage: J.zero().operator().is_invertible() + True + + TESTS: + + The identity operator is always invertible:: + + sage: set_random_seed() + sage: J = random_eja() + sage: J.one().operator().is_invertible() + True + + The zero operator is never invertible in a nontrivial algebra:: + + sage: set_random_seed() + sage: J = random_eja() + sage: not J.is_trivial() and J.zero().operator().is_invertible() + False + + """ + return self.matrix().is_invertible() + + def matrix(self): """ Return the matrix representation of this operator with respect @@ -426,3 +524,62 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): """ # The matrix method returns a polynomial in 'x' but want one in 't'. return self.matrix().minimal_polynomial().change_variable_name('t') + + + def spectral_decomposition(self): + """ + Return the spectral decomposition of this operator as a list of + (eigenvalue, orthogonal projector) pairs. + + This is the unique spectral decomposition, up to the order of + the projection operators, with distinct eigenvalues. So, the + projections are generally onto subspaces of dimension greater + than one. + + SETUP:: + + sage: from mjo.eja.eja_algebra import RealSymmetricEJA + + EXAMPLES:: + + sage: J = RealSymmetricEJA(4,AA) + sage: x = sum(J.gens()) + sage: A = x.subalgebra_generated_by(orthonormalize_basis=True) + sage: L0x = A(x).operator() + sage: sd = L0x.spectral_decomposition() + sage: l0 = sd[0][0] + sage: l1 = sd[1][0] + sage: P0 = sd[0][1] + sage: P1 = sd[1][1] + sage: P0*l0 + P1*l1 == L0x + True + sage: P0 + P1 == P0^0 # the identity + True + sage: P0^2 == P0 + True + sage: P1^2 == P1 + True + sage: P0*P1 == A.zero().operator() + True + sage: P1*P0 == A.zero().operator() + True + + """ + if not self.matrix().is_symmetric(): + raise ValueError('algebra basis is not orthonormal') + + D,P = self.matrix().jordan_form(subdivide=False,transformation=True) + eigenvalues = D.diagonal() + us = P.columns() + projectors = [] + for i in range(len(us)): + # they won't be normalized, but they have to be + # for the spectral theorem to work. + us[i] = us[i]/us[i].norm() + mat = us[i].column()*us[i].row() + Pi = FiniteDimensionalEuclideanJordanAlgebraOperator( + self.domain(), + self.codomain(), + mat) + projectors.append(Pi) + return list(zip(eigenvalues, projectors))