X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_operator.py;h=2a0c9c48633cd06551c49515840680b57a5b927d;hb=5d646c586de50b571d2983b546a05899bf0c20c2;hp=c32ff1ed7c2ba0aa87c842e5545f9bf204f43fac;hpb=e529e0e2775cf50207c7d01d5907214d03cdff5c;p=sage.d.git diff --git a/mjo/eja/eja_operator.py b/mjo/eja/eja_operator.py index c32ff1e..2a0c9c4 100644 --- a/mjo/eja/eja_operator.py +++ b/mjo/eja/eja_operator.py @@ -383,6 +383,104 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): return (self + (-other)) + def inverse(self): + """ + Return the inverse of this operator, if it exists. + + The reason this method is not simply an alias for the built-in + :meth:`__invert__` is that the built-in inversion is a bit magic + since it's intended to be a unary operator. If we alias ``inverse`` + to ``__invert__``, then we wind up having to call e.g. ``A.inverse`` + without parentheses. + + SETUP:: + + sage: from mjo.eja.eja_algebra import RealSymmetricEJA, random_eja + + EXAMPLES:: + + sage: J = RealSymmetricEJA(2) + sage: x = sum(J.gens()) + sage: x.operator().inverse().matrix() + [3/2 -1 1/2] + [ -1 2 -1] + [1/2 -1 3/2] + sage: x.operator().matrix().inverse() + [3/2 -1 1/2] + [ -1 2 -1] + [1/2 -1 3/2] + + TESTS: + + The identity operator is its own inverse:: + + sage: set_random_seed() + sage: J = random_eja() + sage: idJ = J.one().operator() + sage: idJ.inverse() == idJ + True + + The inverse of the inverse is the operator we started with:: + + sage: set_random_seed() + sage: x = random_eja().random_element() + sage: L = x.operator() + sage: not L.is_invertible() or (L.inverse().inverse() == L) + True + + """ + return ~self + + + def is_invertible(self): + """ + Return whether or not this operator is invertible. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (RealSymmetricEJA, + ....: TrivialEJA, + ....: random_eja) + + EXAMPLES:: + + sage: J = RealSymmetricEJA(2) + sage: x = sum(J.gens()) + sage: x.operator().matrix() + [ 1 1/2 0] + [1/2 1 1/2] + [ 0 1/2 1] + sage: x.operator().matrix().is_invertible() + True + sage: x.operator().is_invertible() + True + + The zero operator is invertible in a trivial algebra:: + + sage: J = TrivialEJA() + sage: J.zero().operator().is_invertible() + True + + TESTS: + + The identity operator is always invertible:: + + sage: set_random_seed() + sage: J = random_eja() + sage: J.one().operator().is_invertible() + True + + The zero operator is never invertible in a nontrivial algebra:: + + sage: set_random_seed() + sage: J = random_eja() + sage: not J.is_trivial() and J.zero().operator().is_invertible() + False + + """ + return self.matrix().is_invertible() + + def matrix(self): """ Return the matrix representation of this operator with respect @@ -433,6 +531,11 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): Return the spectral decomposition of this operator as a list of (eigenvalue, orthogonal projector) pairs. + This is the unique spectral decomposition, up to the order of + the projection operators, with distinct eigenvalues. So, the + projections are generally onto subspaces of dimension greater + than one. + SETUP:: sage: from mjo.eja.eja_algebra import RealSymmetricEJA @@ -443,8 +546,22 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): sage: x = sum(J.gens()) sage: A = x.subalgebra_generated_by(orthonormalize_basis=True) sage: L0x = A(x).operator() - sage: Ps = [ P*l for (l,P) in L0x.spectral_decomposition() ] - sage: Ps[0] + Ps[1] == L0x + sage: sd = L0x.spectral_decomposition() + sage: l0 = sd[0][0] + sage: l1 = sd[1][0] + sage: P0 = sd[0][1] + sage: P1 = sd[1][1] + sage: P0*l0 + P1*l1 == L0x + True + sage: P0 + P1 == P0^0 # the identity + True + sage: P0^2 == P0 + True + sage: P1^2 == P1 + True + sage: P0*P1 == A.zero().operator() + True + sage: P1*P0 == A.zero().operator() True """