X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_operator.py;h=2a0c9c48633cd06551c49515840680b57a5b927d;hb=372770929343f5a75e8e8231894b466b3382dd9d;hp=cc1c5e0c4fc401c63628bafa85193fbcd8be470b;hpb=7dcaaf6002d77f4362a60eed0ac7c610666b693c;p=sage.d.git diff --git a/mjo/eja/eja_operator.py b/mjo/eja/eja_operator.py index cc1c5e0..2a0c9c4 100644 --- a/mjo/eja/eja_operator.py +++ b/mjo/eja/eja_operator.py @@ -383,6 +383,104 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): return (self + (-other)) + def inverse(self): + """ + Return the inverse of this operator, if it exists. + + The reason this method is not simply an alias for the built-in + :meth:`__invert__` is that the built-in inversion is a bit magic + since it's intended to be a unary operator. If we alias ``inverse`` + to ``__invert__``, then we wind up having to call e.g. ``A.inverse`` + without parentheses. + + SETUP:: + + sage: from mjo.eja.eja_algebra import RealSymmetricEJA, random_eja + + EXAMPLES:: + + sage: J = RealSymmetricEJA(2) + sage: x = sum(J.gens()) + sage: x.operator().inverse().matrix() + [3/2 -1 1/2] + [ -1 2 -1] + [1/2 -1 3/2] + sage: x.operator().matrix().inverse() + [3/2 -1 1/2] + [ -1 2 -1] + [1/2 -1 3/2] + + TESTS: + + The identity operator is its own inverse:: + + sage: set_random_seed() + sage: J = random_eja() + sage: idJ = J.one().operator() + sage: idJ.inverse() == idJ + True + + The inverse of the inverse is the operator we started with:: + + sage: set_random_seed() + sage: x = random_eja().random_element() + sage: L = x.operator() + sage: not L.is_invertible() or (L.inverse().inverse() == L) + True + + """ + return ~self + + + def is_invertible(self): + """ + Return whether or not this operator is invertible. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (RealSymmetricEJA, + ....: TrivialEJA, + ....: random_eja) + + EXAMPLES:: + + sage: J = RealSymmetricEJA(2) + sage: x = sum(J.gens()) + sage: x.operator().matrix() + [ 1 1/2 0] + [1/2 1 1/2] + [ 0 1/2 1] + sage: x.operator().matrix().is_invertible() + True + sage: x.operator().is_invertible() + True + + The zero operator is invertible in a trivial algebra:: + + sage: J = TrivialEJA() + sage: J.zero().operator().is_invertible() + True + + TESTS: + + The identity operator is always invertible:: + + sage: set_random_seed() + sage: J = random_eja() + sage: J.one().operator().is_invertible() + True + + The zero operator is never invertible in a nontrivial algebra:: + + sage: set_random_seed() + sage: J = random_eja() + sage: not J.is_trivial() and J.zero().operator().is_invertible() + False + + """ + return self.matrix().is_invertible() + + def matrix(self): """ Return the matrix representation of this operator with respect @@ -433,6 +531,11 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): Return the spectral decomposition of this operator as a list of (eigenvalue, orthogonal projector) pairs. + This is the unique spectral decomposition, up to the order of + the projection operators, with distinct eigenvalues. So, the + projections are generally onto subspaces of dimension greater + than one. + SETUP:: sage: from mjo.eja.eja_algebra import RealSymmetricEJA @@ -456,15 +559,9 @@ class FiniteDimensionalEuclideanJordanAlgebraOperator(Map): True sage: P1^2 == P1 True - sage: c0 = P0(A.one()) - sage: c1 = P1(A.one()) - sage: c0.inner_product(c1) == 0 - True - sage: c0 + c1 == A.one() - True - sage: c0.is_idempotent() + sage: P0*P1 == A.zero().operator() True - sage: c1.is_idempotent() + sage: P1*P0 == A.zero().operator() True """