X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_element.py;h=bd45b179541487bd82e3b06768a902a77cd0899d;hb=73ba2d67c0850074e655b4da61aa021e6d9b6816;hp=f26766df80f65de8c31fe12ef3eab5d5bd727c7a;hpb=16825a1ceedeb8363b025cda56dc9f65f639f726;p=sage.d.git diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py index f26766d..bd45b17 100644 --- a/mjo/eja/eja_element.py +++ b/mjo/eja/eja_element.py @@ -1,3 +1,7 @@ +# -*- coding: utf-8 -*- + +from itertools import izip + from sage.matrix.constructor import matrix from sage.modules.free_module import VectorSpace from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement @@ -32,7 +36,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): Return ``self`` raised to the power ``n``. Jordan algebras are always power-associative; see for - example Faraut and Koranyi, Proposition II.1.2 (ii). + example Faraut and Korányi, Proposition II.1.2 (ii). We have to override this because our superclass uses row vectors instead of column vectors! We, on the other hand, @@ -78,7 +82,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): elif n == 1: return self else: - return (self.operator()**(n-1))(self) + return (self**(n-1))*self def apply_univariate_polynomial(self, p): @@ -243,9 +247,8 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: set_random_seed() sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() - sage: x.inner_product(y) in RR + sage: x,y = J.random_elements(2) + sage: x.inner_product(y) in RLF True """ @@ -280,9 +283,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): Test Lemma 1 from Chapter III of Koecher:: sage: set_random_seed() - sage: J = random_eja() - sage: u = J.random_element() - sage: v = J.random_element() + sage: u,v = random_eja().random_elements(2) sage: lhs = u.operator_commutes_with(u*v) sage: rhs = v.operator_commutes_with(u^2) sage: lhs == rhs @@ -292,9 +293,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): Chapter III, or from Baes (2.3):: sage: set_random_seed() - sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() + sage: x,y = random_eja().random_elements(2) sage: Lx = x.operator() sage: Ly = y.operator() sage: Lxx = (x*x).operator() @@ -306,10 +305,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): Baes (2.4):: sage: set_random_seed() - sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() - sage: z = J.random_element() + sage: x,y,z = random_eja().random_elements(3) sage: Lx = x.operator() sage: Ly = y.operator() sage: Lz = z.operator() @@ -323,10 +319,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): Baes (2.5):: sage: set_random_seed() - sage: J = random_eja() - sage: u = J.random_element() - sage: y = J.random_element() - sage: z = J.random_element() + sage: u,y,z = random_eja().random_elements(3) sage: Lu = u.operator() sage: Ly = y.operator() sage: Lz = z.operator() @@ -384,12 +377,11 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): True Ensure that the determinant is multiplicative on an associative - subalgebra as in Faraut and Koranyi's Proposition II.2.2:: + subalgebra as in Faraut and Korányi's Proposition II.2.2:: sage: set_random_seed() sage: J = random_eja().random_element().subalgebra_generated_by() - sage: x = J.random_element() - sage: y = J.random_element() + sage: x,y = J.random_elements(2) sage: (x*y).det() == x.det()*y.det() True @@ -415,7 +407,8 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): SETUP:: - sage: from mjo.eja.eja_algebra import (JordanSpinEJA, + sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA, + ....: JordanSpinEJA, ....: random_eja) EXAMPLES: @@ -437,6 +430,13 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: x.inverse() == J.from_vector(x_inverse) True + Trying to invert a non-invertible element throws an error: + + sage: JordanSpinEJA(3).zero().inverse() + Traceback (most recent call last): + ... + ValueError: element is not invertible + TESTS: The identity element is its own inverse:: @@ -462,13 +462,32 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: (not x.is_invertible()) or (x.inverse().inverse() == x) True - The zero element is never invertible:: + Proposition II.2.3 in Faraut and Korányi says that the inverse + of an element is the inverse of its left-multiplication operator + applied to the algebra's identity, when that inverse exists:: sage: set_random_seed() - sage: J = random_eja().zero().inverse() - Traceback (most recent call last): - ... - ValueError: element is not invertible + sage: J = random_eja() + sage: x = J.random_element() + sage: (not x.operator().is_invertible()) or ( + ....: x.operator().inverse()(J.one()) == x.inverse() ) + True + + Proposition II.2.4 in Faraut and Korányi gives a formula for + the inverse based on the characteristic polynomial and the + Cayley-Hamilton theorem for Euclidean Jordan algebras:: + + sage: set_random_seed() + sage: J = ComplexHermitianEJA(3) + sage: x = J.random_element() + sage: while not x.is_invertible(): + ....: x = J.random_element() + sage: r = J.rank() + sage: a = x.characteristic_polynomial().coefficients(sparse=False) + sage: expected = (-1)^(r+1)/x.det() + sage: expected *= sum( a[i+1]*x^i for i in range(r) ) + sage: x.inverse() == expected + True """ if not self.is_invertible(): @@ -554,10 +573,11 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): TESTS: - The identity element is never nilpotent:: + The identity element is never nilpotent, except in a trivial EJA:: sage: set_random_seed() - sage: random_eja().one().is_nilpotent() + sage: J = random_eja() + sage: J.one().is_nilpotent() and not J.is_trivial() False The additive identity is always nilpotent:: @@ -601,11 +621,11 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): TESTS: The zero element should never be regular, unless the parent - algebra has dimension one:: + algebra has dimension less than or equal to one:: sage: set_random_seed() sage: J = random_eja() - sage: J.dimension() == 1 or not J.zero().is_regular() + sage: J.dimension() <= 1 or not J.zero().is_regular() True The unit element isn't regular unless the algebra happens to @@ -613,7 +633,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: set_random_seed() sage: J = random_eja() - sage: J.dimension() == 1 or not J.one().is_regular() + sage: J.dimension() <= 1 or not J.one().is_regular() True """ @@ -657,14 +677,17 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): TESTS: - The zero and unit elements are both of degree one:: + The zero and unit elements are both of degree one in nontrivial + algebras:: sage: set_random_seed() sage: J = random_eja() - sage: J.zero().degree() - 1 - sage: J.one().degree() - 1 + sage: d = J.zero().degree() + sage: (J.is_trivial() and d == 0) or d == 1 + True + sage: d = J.one().degree() + sage: (J.is_trivial() and d == 0) or d == 1 + True Our implementation agrees with the definition:: @@ -766,7 +789,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: n_max = RealSymmetricEJA._max_test_case_size() sage: n = ZZ.random_element(1, n_max) sage: J1 = RealSymmetricEJA(n,QQ) - sage: J2 = RealSymmetricEJA(n,QQ,False) + sage: J2 = RealSymmetricEJA(n,QQ,normalize_basis=False) sage: X = random_matrix(QQ,n) sage: X = X*X.transpose() sage: x1 = J1(X) @@ -842,7 +865,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): """ B = self.parent().natural_basis() W = self.parent().natural_basis_space() - return W.linear_combination(zip(B,self.to_vector())) + return W.linear_combination(izip(B,self.to_vector())) def norm(self): @@ -885,8 +908,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: set_random_seed() sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() + sage: x,y = J.random_elements(2) sage: x.operator()(y) == x*y True sage: y.operator()(x) == x*y @@ -936,8 +958,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: set_random_seed() sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() + sage: x,y = J.random_elements(2) sage: Lx = x.operator() sage: Lxx = (x*x).operator() sage: Qx = x.quadratic_representation() @@ -982,10 +1003,10 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: not x.is_invertible() or ( ....: x.quadratic_representation(x.inverse())*Qx ....: == - ....: 2*x.operator()*Qex - Qx ) + ....: 2*Lx*Qex - Qx ) True - sage: 2*x.operator()*Qex - Qx == Lxx + sage: 2*Lx*Qex - Qx == Lxx True Property 5: @@ -1022,12 +1043,82 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): + def spectral_decomposition(self): + """ + Return the unique spectral decomposition of this element. + + ALGORITHM: + + Following Faraut and Korányi's Theorem III.1.1, we restrict this + element's left-multiplication-by operator to the subalgebra it + generates. We then compute the spectral decomposition of that + operator, and the spectral projectors we get back must be the + left-multiplication-by operators for the idempotents we + seek. Thus applying them to the identity element gives us those + idempotents. + + Since the eigenvalues are required to be distinct, we take + the spectral decomposition of the zero element to be zero + times the identity element of the algebra (which is idempotent, + obviously). + + SETUP:: + + sage: from mjo.eja.eja_algebra import RealSymmetricEJA + + EXAMPLES: + + The spectral decomposition of the identity is ``1`` times itself, + and the spectral decomposition of zero is ``0`` times the identity:: + + sage: J = RealSymmetricEJA(3,AA) + sage: J.one() + e0 + e2 + e5 + sage: J.one().spectral_decomposition() + [(1, e0 + e2 + e5)] + sage: J.zero().spectral_decomposition() + [(0, e0 + e2 + e5)] + + TESTS:: + + sage: J = RealSymmetricEJA(4,AA) + sage: x = sum(J.gens()) + sage: sd = x.spectral_decomposition() + sage: l0 = sd[0][0] + sage: l1 = sd[1][0] + sage: c0 = sd[0][1] + sage: c1 = sd[1][1] + sage: c0.inner_product(c1) == 0 + True + sage: c0.is_idempotent() + True + sage: c1.is_idempotent() + True + sage: c0 + c1 == J.one() + True + sage: l0*c0 + l1*c1 == x + True - def subalgebra_generated_by(self): + """ + P = self.parent() + A = self.subalgebra_generated_by(orthonormalize_basis=True) + result = [] + for (evalue, proj) in A(self).operator().spectral_decomposition(): + result.append( (evalue, proj(A.one()).superalgebra_element()) ) + return result + + def subalgebra_generated_by(self, orthonormalize_basis=False): """ Return the associative subalgebra of the parent EJA generated by this element. + Since our parent algebra is unital, we want "subalgebra" to mean + "unital subalgebra" as well; thus the subalgebra that an element + generates will itself be a Euclidean Jordan algebra after + restricting the algebra operations appropriately. This is the + subalgebra that Faraut and Korányi work with in section II.2, for + example. + SETUP:: sage: from mjo.eja.eja_algebra import random_eja @@ -1039,9 +1130,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: set_random_seed() sage: x0 = random_eja().random_element() sage: A = x0.subalgebra_generated_by() - sage: x = A.random_element() - sage: y = A.random_element() - sage: z = A.random_element() + sage: x,y,z = A.random_elements(3) sage: (x*y)*z == x*(y*z) True @@ -1054,17 +1143,18 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: A(x^2) == A(x)*A(x) True - The subalgebra generated by the zero element is trivial:: + By definition, the subalgebra generated by the zero element is + the one-dimensional algebra generated by the identity + element... unless the original algebra was trivial, in which + case the subalgebra is trivial too:: sage: set_random_seed() sage: A = random_eja().zero().subalgebra_generated_by() - sage: A - Euclidean Jordan algebra of dimension 0 over... - sage: A.one() - 0 + sage: (A.is_trivial() and A.dimension() == 0) or A.dimension() == 1 + True """ - return FiniteDimensionalEuclideanJordanElementSubalgebra(self) + return FiniteDimensionalEuclideanJordanElementSubalgebra(self, orthonormalize_basis) def subalgebra_idempotent(self): @@ -1152,12 +1242,18 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: set_random_seed() sage: J = random_eja() - sage: J.random_element().trace() in J.base_ring() + sage: J.random_element().trace() in RLF True """ P = self.parent() r = P.rank() + + if r == 0: + # Special case for the trivial algebra where + # the trace is an empty sum. + return P.base_ring().zero() + p = P._charpoly_coeff(r-1) # The _charpoly_coeff function already adds the factor of # -1 to ensure that _charpoly_coeff(r-1) is really what @@ -1176,14 +1272,11 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): TESTS: - The trace inner product is commutative, bilinear, and satisfies - the Jordan axiom: + The trace inner product is commutative, bilinear, and associative:: sage: set_random_seed() sage: J = random_eja() - sage: x = J.random_element(); - sage: y = J.random_element() - sage: z = J.random_element() + sage: x,y,z = J.random_elements(3) sage: # commutative sage: x.trace_inner_product(y) == y.trace_inner_product(x) True @@ -1199,7 +1292,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): ....: a*x.trace_inner_product(z) ) sage: actual == expected True - sage: # jordan axiom + sage: # associative sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z) True