X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_element.py;h=a4af4eaedbb4ce96c16aa31ab0e98c2fa4c5b6c7;hb=64a06cae592dafa4ad007110d5d7ea9ae62dcee5;hp=e7dff7529026cf007056a5ecd66a8f9fba98562a;hpb=e9845713afb8ed88273d2b8dfe170ca8f11a5290;p=sage.d.git diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py index e7dff75..a4af4ea 100644 --- a/mjo/eja/eja_element.py +++ b/mjo/eja/eja_element.py @@ -1040,12 +1040,82 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): + def spectral_decomposition(self): + """ + Return the unique spectral decomposition of this element. + + ALGORITHM: + + Following Faraut and Korányi's Theorem III.1.1, we restrict this + element's left-multiplication-by operator to the subalgebra it + generates. We then compute the spectral decomposition of that + operator, and the spectral projectors we get back must be the + left-multiplication-by operators for the idempotents we + seek. Thus applying them to the identity element gives us those + idempotents. + + Since the eigenvalues are required to be distinct, we take + the spectral decomposition of the zero element to be zero + times the identity element of the algebra (which is idempotent, + obviously). + + SETUP:: + + sage: from mjo.eja.eja_algebra import RealSymmetricEJA + + EXAMPLES: + + The spectral decomposition of the identity is ``1`` times itself, + and the spectral decomposition of zero is ``0`` times the identity:: + + sage: J = RealSymmetricEJA(3,AA) + sage: J.one() + e0 + e2 + e5 + sage: J.one().spectral_decomposition() + [(1, e0 + e2 + e5)] + sage: J.zero().spectral_decomposition() + [(0, e0 + e2 + e5)] + + TESTS:: + + sage: J = RealSymmetricEJA(4,AA) + sage: x = sum(J.gens()) + sage: sd = x.spectral_decomposition() + sage: l0 = sd[0][0] + sage: l1 = sd[1][0] + sage: c0 = sd[0][1] + sage: c1 = sd[1][1] + sage: c0.inner_product(c1) == 0 + True + sage: c0.is_idempotent() + True + sage: c1.is_idempotent() + True + sage: c0 + c1 == J.one() + True + sage: l0*c0 + l1*c1 == x + True + + """ + P = self.parent() + A = self.subalgebra_generated_by(orthonormalize_basis=True) + result = [] + for (evalue, proj) in A(self).operator().spectral_decomposition(): + result.append( (evalue, proj(A.one()).superalgebra_element()) ) + return result def subalgebra_generated_by(self, orthonormalize_basis=False): """ Return the associative subalgebra of the parent EJA generated by this element. + Since our parent algebra is unital, we want "subalgebra" to mean + "unital subalgebra" as well; thus the subalgebra that an element + generates will itself be a Euclidean Jordan algebra after + restricting the algebra operations appropriately. This is the + subalgebra that Faraut and Korányi work with in section II.2, for + example. + SETUP:: sage: from mjo.eja.eja_algebra import random_eja @@ -1070,14 +1140,13 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: A(x^2) == A(x)*A(x) True - The subalgebra generated by the zero element is trivial:: + By definition, the subalgebra generated by the zero element is the + one-dimensional algebra generated by the identity element:: sage: set_random_seed() sage: A = random_eja().zero().subalgebra_generated_by() - sage: A - Euclidean Jordan algebra of dimension 0 over... - sage: A.one() - 0 + sage: A.dimension() + 1 """ return FiniteDimensionalEuclideanJordanElementSubalgebra(self, orthonormalize_basis)