X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_element.py;h=7c861834723344ea6403f9f5da289af8aa299ae7;hb=784a0dc84c5a735c16d604ead783899f5d718c51;hp=e1f75630bf5b3fc33292e4c84fa657fed715828a;hpb=0fd07263cc543e345f3cd7668938f8a0de70641f;p=sage.d.git diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py index e1f7563..7c86183 100644 --- a/mjo/eja/eja_element.py +++ b/mjo/eja/eja_element.py @@ -78,7 +78,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): elif n == 1: return self else: - return (self.operator()**(n-1))(self) + return (self**(n-1))*self def apply_univariate_polynomial(self, p): @@ -243,9 +243,8 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: set_random_seed() sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() - sage: x.inner_product(y) in RR + sage: x,y = J.random_elements(2) + sage: x.inner_product(y) in RLF True """ @@ -280,9 +279,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): Test Lemma 1 from Chapter III of Koecher:: sage: set_random_seed() - sage: J = random_eja() - sage: u = J.random_element() - sage: v = J.random_element() + sage: u,v = random_eja().random_elements(2) sage: lhs = u.operator_commutes_with(u*v) sage: rhs = v.operator_commutes_with(u^2) sage: lhs == rhs @@ -292,9 +289,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): Chapter III, or from Baes (2.3):: sage: set_random_seed() - sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() + sage: x,y = random_eja().random_elements(2) sage: Lx = x.operator() sage: Ly = y.operator() sage: Lxx = (x*x).operator() @@ -306,10 +301,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): Baes (2.4):: sage: set_random_seed() - sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() - sage: z = J.random_element() + sage: x,y,z = random_eja().random_elements(3) sage: Lx = x.operator() sage: Ly = y.operator() sage: Lz = z.operator() @@ -323,10 +315,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): Baes (2.5):: sage: set_random_seed() - sage: J = random_eja() - sage: u = J.random_element() - sage: y = J.random_element() - sage: z = J.random_element() + sage: u,y,z = random_eja().random_elements(3) sage: Lu = u.operator() sage: Ly = y.operator() sage: Lz = z.operator() @@ -388,8 +377,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: set_random_seed() sage: J = random_eja().random_element().subalgebra_generated_by() - sage: x = J.random_element() - sage: y = J.random_element() + sage: x,y = J.random_elements(2) sage: (x*y).det() == x.det()*y.det() True @@ -424,8 +412,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): Example 11.11:: sage: set_random_seed() - sage: n = ZZ.random_element(1,10) - sage: J = JordanSpinEJA(n) + sage: J = JordanSpinEJA.random_instance() sage: x = J.random_element() sage: while not x.is_invertible(): ....: x = J.random_element() @@ -651,8 +638,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): aren't multiples of the identity are regular:: sage: set_random_seed() - sage: n = ZZ.random_element(1,10) - sage: J = JordanSpinEJA(n) + sage: J = JordanSpinEJA.random_instance() sage: x = J.random_element() sage: x == x.coefficient(0)*J.one() or x.degree() == 2 True @@ -709,6 +695,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): SETUP:: sage: from mjo.eja.eja_algebra import (JordanSpinEJA, + ....: RealSymmetricEJA, ....: random_eja) TESTS: @@ -734,10 +721,12 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): The minimal polynomial and the characteristic polynomial coincide and are known (see Alizadeh, Example 11.11) for all elements of the spin factor algebra that aren't scalar multiples of the - identity:: + identity. We require the dimension of the algebra to be at least + two here so that said elements actually exist:: sage: set_random_seed() - sage: n = ZZ.random_element(2,10) + sage: n_max = max(2, JordanSpinEJA._max_test_case_size()) + sage: n = ZZ.random_element(2, n_max) sage: J = JordanSpinEJA(n) sage: y = J.random_element() sage: while y == y.coefficient(0)*J.one(): @@ -758,6 +747,21 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: x.apply_univariate_polynomial(p) 0 + The minimal polynomial is invariant under a change of basis, + and in particular, a re-scaling of the basis:: + + sage: set_random_seed() + sage: n_max = RealSymmetricEJA._max_test_case_size() + sage: n = ZZ.random_element(1, n_max) + sage: J1 = RealSymmetricEJA(n,QQ) + sage: J2 = RealSymmetricEJA(n,QQ,False) + sage: X = random_matrix(QQ,n) + sage: X = X*X.transpose() + sage: x1 = J1(X) + sage: x2 = J2(X) + sage: x1.minimal_polynomial() == x2.minimal_polynomial() + True + """ if self.is_zero(): # We would generate a zero-dimensional subalgebra @@ -825,10 +829,37 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): """ B = self.parent().natural_basis() - W = B[0].matrix_space() + W = self.parent().natural_basis_space() return W.linear_combination(zip(B,self.to_vector())) + def norm(self): + """ + The norm of this element with respect to :meth:`inner_product`. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (JordanSpinEJA, + ....: RealCartesianProductEJA) + + EXAMPLES:: + + sage: J = RealCartesianProductEJA(2) + sage: x = sum(J.gens()) + sage: x.norm() + sqrt(2) + + :: + + sage: J = JordanSpinEJA(4) + sage: x = sum(J.gens()) + sage: x.norm() + 2 + + """ + return self.inner_product(self).sqrt() + + def operator(self): """ Return the left-multiplication-by-this-element @@ -842,8 +873,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: set_random_seed() sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() + sage: x,y = J.random_elements(2) sage: x.operator()(y) == x*y True sage: y.operator()(x) == x*y @@ -874,10 +904,9 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): Alizadeh's Example 11.12:: sage: set_random_seed() - sage: n = ZZ.random_element(1,10) - sage: J = JordanSpinEJA(n) - sage: x = J.random_element() + sage: x = JordanSpinEJA.random_instance().random_element() sage: x_vec = x.to_vector() + sage: n = x_vec.degree() sage: x0 = x_vec[0] sage: x_bar = x_vec[1:] sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)]) @@ -894,8 +923,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: set_random_seed() sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() + sage: x,y = J.random_elements(2) sage: Lx = x.operator() sage: Lxx = (x*x).operator() sage: Qx = x.quadratic_representation() @@ -912,7 +940,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): Property 2 (multiply on the right for :trac:`28272`): - sage: alpha = QQ.random_element() + sage: alpha = J.base_ring().random_element() sage: (alpha*x).quadratic_representation() == Qx*(alpha^2) True @@ -997,9 +1025,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: set_random_seed() sage: x0 = random_eja().random_element() sage: A = x0.subalgebra_generated_by() - sage: x = A.random_element() - sage: y = A.random_element() - sage: z = A.random_element() + sage: x,y,z = A.random_elements(3) sage: (x*y)*z == x*(y*z) True @@ -1017,7 +1043,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: set_random_seed() sage: A = random_eja().zero().subalgebra_generated_by() sage: A - Euclidean Jordan algebra of dimension 0 over Rational Field + Euclidean Jordan algebra of dimension 0 over... sage: A.one() 0 @@ -1110,7 +1136,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: set_random_seed() sage: J = random_eja() - sage: J.random_element().trace() in J.base_ring() + sage: J.random_element().trace() in RLF True """ @@ -1134,22 +1160,17 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): TESTS: - The trace inner product is commutative:: + The trace inner product is commutative, bilinear, and satisfies + the Jordan axiom: sage: set_random_seed() sage: J = random_eja() - sage: x = J.random_element(); y = J.random_element() + sage: x,y,z = J.random_elements(3) + sage: # commutative sage: x.trace_inner_product(y) == y.trace_inner_product(x) True - - The trace inner product is bilinear:: - - sage: set_random_seed() - sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() - sage: z = J.random_element() - sage: a = QQ.random_element(); + sage: # bilinear + sage: a = J.base_ring().random_element(); sage: actual = (a*(x+z)).trace_inner_product(y) sage: expected = ( a*x.trace_inner_product(y) + ....: a*z.trace_inner_product(y) ) @@ -1160,15 +1181,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): ....: a*x.trace_inner_product(z) ) sage: actual == expected True - - The trace inner product satisfies the compatibility - condition in the definition of a Euclidean Jordan algebra:: - - sage: set_random_seed() - sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() - sage: z = J.random_element() + sage: # jordan axiom sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z) True @@ -1177,3 +1190,30 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): raise TypeError("'other' must live in the same algebra") return (self*other).trace() + + + def trace_norm(self): + """ + The norm of this element with respect to :meth:`trace_inner_product`. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (JordanSpinEJA, + ....: RealCartesianProductEJA) + + EXAMPLES:: + + sage: J = RealCartesianProductEJA(2) + sage: x = sum(J.gens()) + sage: x.trace_norm() + sqrt(2) + + :: + + sage: J = JordanSpinEJA(4) + sage: x = sum(J.gens()) + sage: x.trace_norm() + 2*sqrt(2) + + """ + return self.trace_inner_product(self).sqrt()