X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_element.py;h=52933e2decdcf3d9dc1218a568bf29bcff6cf5f1;hb=843814d06f42e6a97e31079173266fa6165e8c6a;hp=9a770ae5f68b3e19f3946ca7716f299a3ff82685;hpb=9efefa3e54fc3e69e3f2c78457d50127a7a10131;p=sage.d.git diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py index 9a770ae..52933e2 100644 --- a/mjo/eja/eja_element.py +++ b/mjo/eja/eja_element.py @@ -664,7 +664,7 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): element should always be in terms of minimal idempotents:: sage: J = JordanSpinEJA(4) - sage: x = sum( i*J.gens()[i] for i in range(len(J.gens())) ) + sage: x = sum( i*J.monomial(i) for i in range(len(J.gens())) ) sage: x.is_regular() True sage: [ c.is_primitive_idempotent() @@ -1047,19 +1047,30 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): """ if self.is_zero(): - # We would generate a zero-dimensional subalgebra - # where the minimal polynomial would be constant. - # That might be correct, but only if *this* algebra - # is trivial too. - if not self.parent().is_trivial(): - # Pretty sure we know what the minimal polynomial of - # the zero operator is going to be. This ensures - # consistency of e.g. the polynomial variable returned - # in the "normal" case without us having to think about it. - return self.operator().minimal_polynomial() - + # Pretty sure we know what the minimal polynomial of + # the zero operator is going to be. This ensures + # consistency of e.g. the polynomial variable returned + # in the "normal" case without us having to think about it. + return self.operator().minimal_polynomial() + + # If we don't orthonormalize the subalgebra's basis, then the + # first two monomials in the subalgebra will be self^0 and + # self^1... assuming that self^1 is not a scalar multiple of + # self^0 (the unit element). We special case these to avoid + # having to solve a system to coerce self into the subalgebra. A = self.subalgebra_generated_by(orthonormalize=False) - return A(self).operator().minimal_polynomial() + + if A.dimension() == 1: + # Does a solve to find the scalar multiple alpha such that + # alpha*unit = self. We have to do this because the basis + # for the subalgebra will be [ self^0 ], and not [ self^1 ]! + unit = self.parent().one() + alpha = self.to_vector() / unit.to_vector() + return (unit.operator()*alpha).minimal_polynomial() + else: + # If the dimension of the subalgebra is >= 2, then we just + # use the second basis element. + return A.monomial(1).operator().minimal_polynomial() @@ -1125,14 +1136,13 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): B = self.parent().matrix_basis() W = self.parent().matrix_space() - if self.parent()._matrix_basis_is_cartesian: + if hasattr(W, 'cartesian_factors'): # Aaaaand linear combinations don't work in Cartesian - # product spaces, even though they provide a method - # with that name. This is special-cased because the + # product spaces, even though they provide a method with + # that name. This is hidden behind an "if" because the # _scale() function is slow. pairs = zip(B, self.to_vector()) - return sum( ( _scale(b, alpha) for (b,alpha) in pairs ), - W.zero()) + return W.sum( _scale(b, alpha) for (b,alpha) in pairs ) else: # This is just a manual "from_vector()", but of course # matrix spaces aren't vector spaces in sage, so they