X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_element.py;h=235047a153f0594bf450987ae2988a5873d92f36;hb=1b030ce345a244815a8317f7e8a95114c16c330b;hp=e1ea609efce334a9800ce162ba74d1342662da41;hpb=31f14e8f8c51d34823ca26aaa9568f924304d08b;p=sage.d.git diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py index e1ea609..235047a 100644 --- a/mjo/eja/eja_element.py +++ b/mjo/eja/eja_element.py @@ -795,7 +795,23 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): ALGORITHM: - ......... + First we handle the special cases where the algebra is + trivial, this element is zero, or the dimension of the algebra + is one and this element is not zero. With those out of the + way, we may assume that ``self`` is nonzero, the algebra is + nontrivial, and that the dimension of the algebra is at least + two. + + Beginning with the algebra's unit element (power zero), we add + successive (basis representations of) powers of this element + to a matrix, row-reducing at each step. After row-reducing, we + check the rank of the matrix. If adding a row and row-reducing + does not increase the rank of the matrix at any point, the row + we've just added lives in the span of the previous ones; thus + the corresponding power of ``self`` lives in the span of its + lesser powers. When that happens, the degree of the minimal + polynomial is the rank of the matrix; if it never happens, the + degree must be the dimension of the entire space. SETUP:: @@ -838,7 +854,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): sage: x = random_eja().random_element() sage: x.degree() == x.minimal_polynomial().degree() True - """ n = self.parent().dimension() @@ -1440,7 +1455,10 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): if self.is_nilpotent(): raise ValueError("this only works with non-nilpotent elements!") - J = self.subalgebra_generated_by() + # The subalgebra is transient (we return an element of the + # superalgebra, i.e. this algebra) so why bother + # orthonormalizing? + J = self.subalgebra_generated_by(orthonormalize=False) u = J(self) # The image of the matrix of left-u^m-multiplication @@ -1461,14 +1479,12 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): # subspace... or do we? Can't we just solve, knowing that # A(c) = u^(s+1) should have a solution in the big space, # too? - # - # Beware, solve_right() means that we're using COLUMN vectors. - # Our FiniteDimensionalAlgebraElement superclass uses rows. u_next = u**(s+1) A = u_next.operator().matrix() c = J.from_vector(A.solve_right(u_next.to_vector())) - # Now c is the idempotent we want, but it still lives in the subalgebra. + # Now c is the idempotent we want, but it still lives in + # the subalgebra. return c.superalgebra_element()