X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_element.py;h=0f6a47cd4f10efbcb0298725c4ae26537eae6372;hb=98da0ce1d1102057e34646889c10dfa01fa9faec;hp=7c4c79ddcd7315e654620a0be8f8bccf5ab9ac11;hpb=58ce52dbf3c4310e70020153873430a1043acb53;p=sage.d.git diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py index 7c4c79d..0f6a47c 100644 --- a/mjo/eja/eja_element.py +++ b/mjo/eja/eja_element.py @@ -113,7 +113,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): We should always get back an element of the algebra:: sage: set_random_seed() - sage: p = PolynomialRing(QQ, 't').random_element() + sage: p = PolynomialRing(AA, 't').random_element() sage: J = random_eja() sage: x = J.random_element() sage: x.apply_univariate_polynomial(p) in J @@ -575,7 +575,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): The spectral decomposition of a non-regular element should always contain at least one non-minimal idempotent:: - sage: J = RealSymmetricEJA(3, AA) + sage: J = RealSymmetricEJA(3) sage: x = sum(J.gens()) sage: x.is_regular() False @@ -586,7 +586,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): On the other hand, the spectral decomposition of a regular element should always be in terms of minimal idempotents:: - sage: J = JordanSpinEJA(4, AA) + sage: J = JordanSpinEJA(4) sage: x = sum( i*J.gens()[i] for i in range(len(J.gens())) ) sage: x.is_regular() True @@ -909,9 +909,9 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: set_random_seed() sage: n_max = RealSymmetricEJA._max_test_case_size() sage: n = ZZ.random_element(1, n_max) - sage: J1 = RealSymmetricEJA(n,QQ) - sage: J2 = RealSymmetricEJA(n,QQ,normalize_basis=False) - sage: X = random_matrix(QQ,n) + sage: J1 = RealSymmetricEJA(n) + sage: J2 = RealSymmetricEJA(n,normalize_basis=False) + sage: X = random_matrix(AA,n) sage: X = X*X.transpose() sage: x1 = J1(X) sage: x2 = J2(X) @@ -1003,7 +1003,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: J = HadamardEJA(2) sage: x = sum(J.gens()) sage: x.norm() - sqrt(2) + 1.414213562373095? :: @@ -1065,10 +1065,10 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: n = x_vec.degree() sage: x0 = x_vec[0] sage: x_bar = x_vec[1:] - sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)]) + sage: A = matrix(AA, 1, [x_vec.inner_product(x_vec)]) sage: B = 2*x0*x_bar.row() sage: C = 2*x0*x_bar.column() - sage: D = matrix.identity(QQ, n-1) + sage: D = matrix.identity(AA, n-1) sage: D = (x0^2 - x_bar.inner_product(x_bar))*D sage: D = D + 2*x_bar.tensor_product(x_bar) sage: Q = matrix.block(2,2,[A,B,C,D]) @@ -1192,7 +1192,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): The spectral decomposition of the identity is ``1`` times itself, and the spectral decomposition of zero is ``0`` times the identity:: - sage: J = RealSymmetricEJA(3,AA) + sage: J = RealSymmetricEJA(3) sage: J.one() e0 + e2 + e5 sage: J.one().spectral_decomposition() @@ -1202,7 +1202,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): TESTS:: - sage: J = RealSymmetricEJA(4,AA) + sage: J = RealSymmetricEJA(4) sage: x = sum(J.gens()) sage: sd = x.spectral_decomposition() sage: l0 = sd[0][0] @@ -1453,14 +1453,14 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: J = HadamardEJA(2) sage: x = sum(J.gens()) sage: x.trace_norm() - sqrt(2) + 1.414213562373095? :: sage: J = JordanSpinEJA(4) sage: x = sum(J.gens()) sage: x.trace_norm() - 2*sqrt(2) + 2.828427124746190? """ return self.trace_inner_product(self).sqrt()