X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=fec8a39f00840c10ee22a493756e75abcc6da317;hb=47ff028e7a57a9818d9527664efca945acbe6359;hp=dfb15c627fe021a3d3b47348a42ea56dc666e6fc;hpb=8698debba196d8746c1a32d8e6866085b6cb2161;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index dfb15c6..fec8a39 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -17,7 +17,7 @@ from sage.misc.lazy_import import lazy_import from sage.misc.prandom import choice from sage.misc.table import table from sage.modules.free_module import FreeModule, VectorSpace -from sage.rings.all import (ZZ, QQ, RR, RLF, CLF, +from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF, PolynomialRing, QuadraticField) from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement @@ -26,13 +26,30 @@ lazy_import('mjo.eja.eja_subalgebra', from mjo.eja.eja_utils import _mat2vec class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): - # This is an ugly hack needed to prevent the category framework - # from implementing a coercion from our base ring (e.g. the - # rationals) into the algebra. First of all -- such a coercion is - # nonsense to begin with. But more importantly, it tries to do so - # in the category of rings, and since our algebras aren't - # associative they generally won't be rings. - _no_generic_basering_coercion = True + + def _coerce_map_from_base_ring(self): + """ + Disable the map from the base ring into the algebra. + + Performing a nonsense conversion like this automatically + is counterpedagogical. The fallback is to try the usual + element constructor, which should also fail. + + SETUP:: + + sage: from mjo.eja.eja_algebra import random_eja + + TESTS:: + + sage: set_random_seed() + sage: J = random_eja() + sage: J(1) + Traceback (most recent call last): + ... + ValueError: not a naturally-represented algebra element + + """ + return None def __init__(self, field, @@ -94,8 +111,10 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): # long run to have the multiplication table be in terms of # algebra elements. We do this after calling the superclass # constructor so that from_vector() knows what to do. - self._multiplication_table = [ map(lambda x: self.from_vector(x), ls) - for ls in mult_table ] + self._multiplication_table = [ + list(map(lambda x: self.from_vector(x), ls)) + for ls in mult_table + ] def _element_constructor_(self, elt): @@ -109,7 +128,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): SETUP:: sage: from mjo.eja.eja_algebra import (JordanSpinEJA, - ....: RealCartesianProductEJA, + ....: HadamardEJA, ....: RealSymmetricEJA) EXAMPLES: @@ -137,7 +156,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): vector representations) back and forth faithfully:: sage: set_random_seed() - sage: J = RealCartesianProductEJA.random_instance() + sage: J = HadamardEJA.random_instance() sage: x = J.random_element() sage: J(x.to_vector().column()) == x True @@ -147,15 +166,22 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): True """ + msg = "not a naturally-represented algebra element" if elt == 0: # The superclass implementation of random_element() # needs to be able to coerce "0" into the algebra. return self.zero() + elif elt in self.base_ring(): + # Ensure that no base ring -> algebra coercion is performed + # by this method. There's some stupidity in sage that would + # otherwise propagate to this method; for example, sage thinks + # that the integer 3 belongs to the space of 2-by-2 matrices. + raise ValueError(msg) natural_basis = self.natural_basis() basis_space = natural_basis[0].matrix_space() if elt not in basis_space: - raise ValueError("not a naturally-represented algebra element") + raise ValueError(msg) # Thanks for nothing! Matrix spaces aren't vector spaces in # Sage, so we have to figure out its natural-basis coordinates @@ -181,8 +207,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): Ensure that it says what we think it says:: - sage: JordanSpinEJA(2, field=QQ) - Euclidean Jordan algebra of dimension 2 over Rational Field + sage: JordanSpinEJA(2, field=AA) + Euclidean Jordan algebra of dimension 2 over Algebraic Real Field sage: JordanSpinEJA(3, field=RDF) Euclidean Jordan algebra of dimension 3 over Real Double Field @@ -525,8 +551,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): Finite family {0: e0, 1: e1, 2: e2} sage: J.natural_basis() ( - [1 0] [ 0 1/2*sqrt2] [0 0] - [0 0], [1/2*sqrt2 0], [0 1] + [1 0] [ 0 0.7071067811865475?] [0 0] + [0 0], [0.7071067811865475? 0], [0 1] ) :: @@ -580,12 +606,12 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): SETUP:: - sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA, + sage: from mjo.eja.eja_algebra import (HadamardEJA, ....: random_eja) EXAMPLES:: - sage: J = RealCartesianProductEJA(5) + sage: J = HadamardEJA(5) sage: J.one() e0 + e1 + e2 + e3 + e4 @@ -731,7 +757,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half J1 = trivial # eigenvalue one - for (eigval, eigspace) in c.operator().matrix().left_eigenspaces(): + for (eigval, eigspace) in c.operator().matrix().right_eigenspaces(): if eigval == ~(self.base_ring()(2)): J5 = eigspace else: @@ -768,6 +794,84 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): return tuple( self.random_element() for idx in range(count) ) + def _rank_computation(self): + r""" + Compute the rank of this algebra using highly suspicious voodoo. + + ALGORITHM: + + We first compute the basis representation of the operator L_x + using polynomial indeterminates are placeholders for the + coordinates of "x", which is arbitrary. We then use that + matrix to compute the (polynomial) entries of x^0, x^1, ..., + x^d,... for increasing values of "d", starting at zero. The + idea is that. If we also add "coefficient variables" a_0, + a_1,... to the ring, we can form the linear combination + a_0*x^0 + ... + a_d*x^d = 0, and ask what dimension the + solution space has as an affine variety. When "d" is smaller + than the rank, we expect that dimension to be the number of + coordinates of "x", since we can set *those* to whatever we + want, but linear independence forces the coefficients a_i to + be zero. Eventually, when "d" passes the rank, the dimension + of the solution space begins to grow, because we can *still* + set the coordinates of "x" arbitrarily, but now there are some + coefficients that make the sum zero as well. So, when the + dimension of the variety jumps, we return the corresponding + "d" as the rank of the algebra. This appears to work. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (HadamardEJA, + ....: JordanSpinEJA, + ....: RealSymmetricEJA, + ....: ComplexHermitianEJA, + ....: QuaternionHermitianEJA) + + EXAMPLES:: + + sage: J = HadamardEJA(5) + sage: J._rank_computation() == J.rank() + True + sage: J = JordanSpinEJA(5) + sage: J._rank_computation() == J.rank() + True + sage: J = RealSymmetricEJA(4) + sage: J._rank_computation() == J.rank() + True + sage: J = ComplexHermitianEJA(3) + sage: J._rank_computation() == J.rank() + True + sage: J = QuaternionHermitianEJA(2) + sage: J._rank_computation() == J.rank() + True + + """ + n = self.dimension() + var_names = [ "X" + str(z) for z in range(1,n+1) ] + d = 0 + ideal_dim = len(var_names) + def L_x_i_j(i,j): + # From a result in my book, these are the entries of the + # basis representation of L_x. + return sum( vars[d+k]*self.monomial(k).operator().matrix()[i,j] + for k in range(n) ) + + while ideal_dim == len(var_names): + coeff_names = [ "a" + str(z) for z in range(d) ] + R = PolynomialRing(self.base_ring(), coeff_names + var_names) + vars = R.gens() + L_x = matrix(R, n, n, L_x_i_j) + x_powers = [ vars[k]*(L_x**k)*self.one().to_vector() + for k in range(d) ] + eqs = [ sum(x_powers[k][j] for k in range(d)) for j in range(n) ] + ideal_dim = R.ideal(eqs).dimension() + d += 1 + + # Subtract one because we increment one too many times, and + # subtract another one because "d" is one greater than the + # answer anyway; when d=3, we go up to x^2. + return d-2 + def rank(self): """ Return the rank of this EJA. @@ -885,7 +989,7 @@ class KnownRankEJA(object): return 5 @classmethod - def random_instance(cls, field=QQ, **kwargs): + def random_instance(cls, field=AA, **kwargs): """ Return a random instance of this type of algebra. @@ -901,8 +1005,7 @@ class KnownRankEJA(object): return cls(n, field, **kwargs) -class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra, - KnownRankEJA): +class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA): """ Return the Euclidean Jordan Algebra corresponding to the set `R^n` under the Hadamard product. @@ -913,13 +1016,13 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra, SETUP:: - sage: from mjo.eja.eja_algebra import RealCartesianProductEJA + sage: from mjo.eja.eja_algebra import HadamardEJA EXAMPLES: This multiplication table can be verified by hand:: - sage: J = RealCartesianProductEJA(3) + sage: J = HadamardEJA(3) sage: e0,e1,e2 = J.gens() sage: e0*e0 e0 @@ -938,16 +1041,16 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra, We can change the generator prefix:: - sage: RealCartesianProductEJA(3, prefix='r').gens() + sage: HadamardEJA(3, prefix='r').gens() (r0, r1, r2) """ - def __init__(self, n, field=QQ, **kwargs): + def __init__(self, n, field=AA, **kwargs): V = VectorSpace(field, n) mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ] for i in range(n) ] - fdeja = super(RealCartesianProductEJA, self) + fdeja = super(HadamardEJA, self) return fdeja.__init__(field, mult_table, rank=n, **kwargs) def inner_product(self, x, y): @@ -956,7 +1059,7 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra, SETUP:: - sage: from mjo.eja.eja_algebra import RealCartesianProductEJA + sage: from mjo.eja.eja_algebra import HadamardEJA TESTS: @@ -964,7 +1067,7 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra, over `R^n`:: sage: set_random_seed() - sage: J = RealCartesianProductEJA.random_instance() + sage: J = HadamardEJA.random_instance() sage: x,y = J.random_elements(2) sage: X = x.natural_representation() sage: Y = y.natural_representation() @@ -975,7 +1078,7 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra, return x.to_vector().inner_product(y.to_vector()) -def random_eja(field=QQ, nontrivial=False): +def random_eja(field=AA, nontrivial=False): """ Return a "random" finite-dimensional Euclidean Jordan Algebra. @@ -1195,8 +1298,8 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra, KnownRankEJA): In theory, our "field" can be any subfield of the reals:: - sage: RealSymmetricEJA(2, AA) - Euclidean Jordan algebra of dimension 3 over Algebraic Real Field + sage: RealSymmetricEJA(2, RDF) + Euclidean Jordan algebra of dimension 3 over Real Double Field sage: RealSymmetricEJA(2, RR) Euclidean Jordan algebra of dimension 3 over Real Field with 53 bits of precision @@ -1288,7 +1391,7 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra, KnownRankEJA): return 4 # Dimension 10 - def __init__(self, n, field=QQ, **kwargs): + def __init__(self, n, field=AA, **kwargs): basis = self._denormalized_basis(n, field) super(RealSymmetricEJA, self).__init__(field, basis, n, **kwargs) @@ -1308,7 +1411,7 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra): EXAMPLES:: - sage: F = QuadraticField(-1, 'i') + sage: F = QuadraticField(-1, 'I') sage: x1 = F(4 - 2*i) sage: x2 = F(1 + 2*i) sage: x3 = F(-i) @@ -1328,7 +1431,7 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra): sage: set_random_seed() sage: n_max = ComplexMatrixEuclideanJordanAlgebra._max_test_case_size() sage: n = ZZ.random_element(n_max) - sage: F = QuadraticField(-1, 'i') + sage: F = QuadraticField(-1, 'I') sage: X = random_matrix(F, n) sage: Y = random_matrix(F, n) sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X) @@ -1371,15 +1474,15 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra): ....: [ 9, 10, 11, 12], ....: [-10, 9, -12, 11] ]) sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A) - [ 2*i + 1 4*i + 3] - [ 10*i + 9 12*i + 11] + [ 2*I + 1 4*I + 3] + [ 10*I + 9 12*I + 11] TESTS: Unembedding is the inverse of embedding:: sage: set_random_seed() - sage: F = QuadraticField(-1, 'i') + sage: F = QuadraticField(-1, 'I') sage: M = random_matrix(F, 3) sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M) sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M @@ -1397,7 +1500,12 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra): field = M.base_ring() R = PolynomialRing(field, 'z') z = R.gen() - F = field.extension(z**2 + 1, 'i', embedding=CLF(-1).sqrt()) + if field is AA: + # Sage doesn't know how to embed AA into QQbar, i.e. how + # to adjoin sqrt(-1) to AA. + F = QQbar + else: + F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt()) i = F.gen() # Go top-left to bottom-right (reading order), converting every @@ -1438,7 +1546,7 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra): sage: Ye = y.natural_representation() sage: X = ComplexHermitianEJA.real_unembed(Xe) sage: Y = ComplexHermitianEJA.real_unembed(Ye) - sage: expected = (X*Y).trace().vector()[0] + sage: expected = (X*Y).trace().real() sage: actual = ComplexHermitianEJA.natural_inner_product(Xe,Ye) sage: actual == expected True @@ -1462,8 +1570,8 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra, KnownRankEJA): In theory, our "field" can be any subfield of the reals:: - sage: ComplexHermitianEJA(2, AA) - Euclidean Jordan algebra of dimension 4 over Algebraic Real Field + sage: ComplexHermitianEJA(2, RDF) + Euclidean Jordan algebra of dimension 4 over Real Double Field sage: ComplexHermitianEJA(2, RR) Euclidean Jordan algebra of dimension 4 over Real Field with 53 bits of precision @@ -1573,7 +1681,7 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra, KnownRankEJA): return ( s.change_ring(field) for s in S ) - def __init__(self, n, field=QQ, **kwargs): + def __init__(self, n, field=AA, **kwargs): basis = self._denormalized_basis(n,field) super(ComplexHermitianEJA,self).__init__(field, basis, n, **kwargs) @@ -1625,7 +1733,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra): if M.ncols() != n: raise ValueError("the matrix 'M' must be square") - F = QuadraticField(-1, 'i') + F = QuadraticField(-1, 'I') i = F.gen() blocks = [] @@ -1701,10 +1809,10 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra): raise ValueError('bad on-diagonal submatrix') if submat[0,1] != -submat[1,0].conjugate(): raise ValueError('bad off-diagonal submatrix') - z = submat[0,0].vector()[0] # real part - z += submat[0,0].vector()[1]*i # imag part - z += submat[0,1].vector()[0]*j # real part - z += submat[0,1].vector()[1]*k # imag part + z = submat[0,0].real() + z += submat[0,0].imag()*i + z += submat[0,1].real()*j + z += submat[0,1].imag()*k elements.append(z) return matrix(Q, n/4, elements) @@ -1757,8 +1865,8 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra, In theory, our "field" can be any subfield of the reals:: - sage: QuaternionHermitianEJA(2, AA) - Euclidean Jordan algebra of dimension 6 over Algebraic Real Field + sage: QuaternionHermitianEJA(2, RDF) + Euclidean Jordan algebra of dimension 6 over Real Double Field sage: QuaternionHermitianEJA(2, RR) Euclidean Jordan algebra of dimension 6 over Real Field with 53 bits of precision @@ -1869,16 +1977,134 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra, return ( s.change_ring(field) for s in S ) - def __init__(self, n, field=QQ, **kwargs): + def __init__(self, n, field=AA, **kwargs): basis = self._denormalized_basis(n,field) super(QuaternionHermitianEJA,self).__init__(field, basis, n, **kwargs) -class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA): +class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA): + r""" + The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)`` + with the half-trace inner product and jordan product ``x*y = + (x0*y0 + , x0*y_bar + y0*x_bar)`` where ``B`` is a + symmetric positive-definite "bilinear form" matrix. It has + dimension `n` over the reals, and reduces to the ``JordanSpinEJA`` + when ``B`` is the identity matrix of order ``n-1``. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (BilinearFormEJA, + ....: JordanSpinEJA) + + EXAMPLES: + + When no bilinear form is specified, the identity matrix is used, + and the resulting algebra is the Jordan spin algebra:: + + sage: J0 = BilinearFormEJA(3) + sage: J1 = JordanSpinEJA(3) + sage: J0.multiplication_table() == J0.multiplication_table() + True + + TESTS: + + We can create a zero-dimensional algebra:: + + sage: J = BilinearFormEJA(0) + sage: J.basis() + Finite family {} + + We can check the multiplication condition given in the Jordan, von + Neumann, and Wigner paper (and also discussed on my "On the + symmetry..." paper). Note that this relies heavily on the standard + choice of basis, as does anything utilizing the bilinear form matrix:: + + sage: set_random_seed() + sage: n = ZZ.random_element(5) + sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular') + sage: B = M.transpose()*M + sage: J = BilinearFormEJA(n, B=B) + sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis() + sage: V = J.vector_space() + sage: sis = [ J.from_vector(V([0] + (M.inverse()*ei).list())) + ....: for ei in eis ] + sage: actual = [ sis[i]*sis[j] + ....: for i in range(n-1) + ....: for j in range(n-1) ] + sage: expected = [ J.one() if i == j else J.zero() + ....: for i in range(n-1) + ....: for j in range(n-1) ] + sage: actual == expected + True + """ + def __init__(self, n, field=AA, B=None, **kwargs): + if B is None: + self._B = matrix.identity(field, max(0,n-1)) + else: + self._B = B + + V = VectorSpace(field, n) + mult_table = [[V.zero() for j in range(n)] for i in range(n)] + for i in range(n): + for j in range(n): + x = V.gen(i) + y = V.gen(j) + x0 = x[0] + xbar = x[1:] + y0 = y[0] + ybar = y[1:] + z0 = x0*y0 + (self._B*xbar).inner_product(ybar) + zbar = y0*xbar + x0*ybar + z = V([z0] + zbar.list()) + mult_table[i][j] = z + + # The rank of this algebra is two, unless we're in a + # one-dimensional ambient space (because the rank is bounded + # by the ambient dimension). + fdeja = super(BilinearFormEJA, self) + return fdeja.__init__(field, mult_table, rank=min(n,2), **kwargs) + + def inner_product(self, x, y): + r""" + Half of the trace inner product. + + This is defined so that the special case of the Jordan spin + algebra gets the usual inner product. + + SETUP:: + + sage: from mjo.eja.eja_algebra import BilinearFormEJA + + TESTS: + + Ensure that this is one-half of the trace inner-product when + the algebra isn't just the reals (when ``n`` isn't one). This + is in Faraut and Koranyi, and also my "On the symmetry..." + paper:: + + sage: set_random_seed() + sage: n = ZZ.random_element(2,5) + sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular') + sage: B = M.transpose()*M + sage: J = BilinearFormEJA(n, B=B) + sage: x = J.random_element() + sage: y = J.random_element() + sage: x.inner_product(y) == (x*y).trace()/2 + True + + """ + xvec = x.to_vector() + xbar = xvec[1:] + yvec = y.to_vector() + ybar = yvec[1:] + return x[0]*y[0] + (self._B*xbar).inner_product(ybar) + + +class JordanSpinEJA(BilinearFormEJA): """ The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)`` with the usual inner product and jordan product ``x*y = - (, x0*y_bar + y0*x_bar)``. It has dimension `n` over + (, x0*y_bar + y0*x_bar)``. It has dimension `n` over the reals. SETUP:: @@ -1911,42 +2137,9 @@ class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA): sage: JordanSpinEJA(2, prefix='B').gens() (B0, B1) - """ - def __init__(self, n, field=QQ, **kwargs): - V = VectorSpace(field, n) - mult_table = [[V.zero() for j in range(n)] for i in range(n)] - for i in range(n): - for j in range(n): - x = V.gen(i) - y = V.gen(j) - x0 = x[0] - xbar = x[1:] - y0 = y[0] - ybar = y[1:] - # z = x*y - z0 = x.inner_product(y) - zbar = y0*xbar + x0*ybar - z = V([z0] + zbar.list()) - mult_table[i][j] = z - - # The rank of the spin algebra is two, unless we're in a - # one-dimensional ambient space (because the rank is bounded by - # the ambient dimension). - fdeja = super(JordanSpinEJA, self) - return fdeja.__init__(field, mult_table, rank=min(n,2), **kwargs) - - def inner_product(self, x, y): - """ - Faster to reimplement than to use natural representations. - - SETUP:: - - sage: from mjo.eja.eja_algebra import JordanSpinEJA - - TESTS: + TESTS: - Ensure that this is the usual inner product for the algebras - over `R^n`:: + Ensure that we have the usual inner product on `R^n`:: sage: set_random_seed() sage: J = JordanSpinEJA.random_instance() @@ -1956,8 +2149,11 @@ class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA): sage: x.inner_product(y) == J.natural_inner_product(X,Y) True - """ - return x.to_vector().inner_product(y.to_vector()) + """ + def __init__(self, n, field=AA, **kwargs): + # This is a special case of the BilinearFormEJA with the identity + # matrix as its bilinear form. + return super(JordanSpinEJA, self).__init__(n, field, **kwargs) class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA): @@ -1984,12 +2180,12 @@ class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA): sage: J.one().norm() 0 sage: J.one().subalgebra_generated_by() - Euclidean Jordan algebra of dimension 0 over Rational Field + Euclidean Jordan algebra of dimension 0 over Algebraic Real Field sage: J.rank() 0 """ - def __init__(self, field=QQ, **kwargs): + def __init__(self, field=AA, **kwargs): mult_table = [] fdeja = super(TrivialEJA, self) # The rank is zero using my definition, namely the dimension of the