X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=e6aba200a90a0317150bde9093f6a28569d2db74;hb=3f49e3bf2b85b1918c1abb0e8973a6f203dabc86;hp=ee2b52665e8a7d73b50fb4e159430627bcf8b36b;hpb=63d9a1be5861241fb7f02838a74589cf56c2548e;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index ee2b526..e6aba20 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -347,14 +347,19 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # its own set of non-ambient coordinates (in terms of the # supplied basis). vector_basis = tuple( V(_all2list(b)) for b in basis ) - W = V.span_of_basis( vector_basis, check=check_axioms) + + # Save the span of our matrix basis (when written out as long + # vectors) because otherwise we'll have to reconstruct it + # every time we want to coerce a matrix into the algebra. + self._matrix_span = V.span_of_basis( vector_basis, check=check_axioms) if orthonormalize: - # Now "W" is the vector space of our algebra coordinates. The - # variables "X1", "X2",... refer to the entries of vectors in - # W. Thus to convert back and forth between the orthonormal - # coordinates and the given ones, we need to stick the original - # basis in W. + # Now "self._matrix_span" is the vector space of our + # algebra coordinates. The variables "X1", "X2",... refer + # to the entries of vectors in self._matrix_span. Thus to + # convert back and forth between the orthonormal + # coordinates and the given ones, we need to stick the + # original basis in self._matrix_span. U = V.span_of_basis( deortho_vector_basis, check=check_axioms) self._deortho_matrix = matrix.column( U.coordinate_vector(q) for q in vector_basis ) @@ -378,7 +383,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # The jordan product returns a matrixy answer, so we # have to convert it to the algebra coordinates. elt = jordan_product(q_i, q_j) - elt = W.coordinate_vector(V(_all2list(elt))) + elt = self._matrix_span.coordinate_vector(V(_all2list(elt))) self._multiplication_table[i][j] = self.from_vector(elt) if not orthonormalize: @@ -685,8 +690,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): def _element_constructor_(self, elt): """ - Construct an element of this algebra from its vector or matrix - representation. + Construct an element of this algebra or a subalgebra from its + EJA element, vector, or matrix representation. This gets called only after the parent element _call_ method fails to find a coercion for the argument. @@ -725,6 +730,16 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) ) b1 + b5 + Subalgebra elements are embedded into the superalgebra:: + + sage: J = JordanSpinEJA(3) + sage: J.one() + b0 + sage: x = sum(J.gens()) + sage: A = x.subalgebra_generated_by() + sage: J(A.one()) + b0 + TESTS: Ensure that we can convert any element back and forth @@ -749,6 +764,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): Traceback (most recent call last): ... ValueError: not an element of this algebra + """ msg = "not an element of this algebra" if elt in self.base_ring(): @@ -758,13 +774,16 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # that the integer 3 belongs to the space of 2-by-2 matrices. raise ValueError(msg) - try: - # Try to convert a vector into a column-matrix... + if hasattr(elt, 'superalgebra_element'): + # Handle subalgebra elements + if elt.parent().superalgebra() == self: + return elt.superalgebra_element() + + if hasattr(elt, 'sparse_vector'): + # Convert a vector into a column-matrix. We check for + # "sparse_vector" and not "column" because matrices also + # have a "column" method. elt = elt.column() - except (AttributeError, TypeError): - # and ignore failure, because we weren't really expecting - # a vector as an argument anyway. - pass if elt not in self.matrix_space(): raise ValueError(msg) @@ -781,15 +800,10 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # is that we're already converting everything to long vectors, # and that strategy works for tuples as well. # - # We pass check=False because the matrix basis is "guaranteed" - # to be linearly independent... right? Ha ha. - elt = _all2list(elt) - V = VectorSpace(self.base_ring(), len(elt)) - W = V.span_of_basis( (V(_all2list(s)) for s in self.matrix_basis()), - check=False) + elt = self._matrix_span.ambient_vector_space()(_all2list(elt)) try: - coords = W.coordinate_vector(V(elt)) + coords = self._matrix_span.coordinate_vector(elt) except ArithmeticError: # vector is not in free module raise ValueError(msg)