X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=e436bf144970a8398794903db00d52c86c3ce07e;hb=4bca351aed81d3ee621b530e7e802122b08bd2a6;hp=c822d14f6d0900a8b90c24d377fb31196003e0e8;hpb=cda12a746b75b33381325e31afab44c6e9b85950;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index c822d14..e436bf1 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -588,6 +588,16 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): sage: actual == expected True + Ensure that the cached unit element (often precomputed by + hand) agrees with the computed one:: + + sage: set_random_seed() + sage: J = random_eja() + sage: cached = J.one() + sage: J.one.clear_cache() + sage: J.one() == cached + True + """ # We can brute-force compute the matrices of the operators # that correspond to the basis elements of this algebra. @@ -1108,7 +1118,8 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): # time to ensure that it isn't a generator expression. basis = tuple(basis) - if len(basis) > 1 and normalize_basis: + algebra_dim = len(basis) + if algebra_dim > 1 and normalize_basis: # We'll need sqrt(2) to normalize the basis, and this # winds up in the multiplication table, so the whole # algebra needs to be over the field extension. @@ -1129,6 +1140,14 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): natural_basis=basis, **kwargs) + if algebra_dim == 0: + self.one.set_cache(self.zero()) + else: + n = basis[0].nrows() + # The identity wrt (A,B) -> (AB + BA)/2 is independent of the + # details of this algebra. + self.one.set_cache(self(matrix.identity(field,n))) + @cached_method def _charpoly_coefficients(self): @@ -2051,6 +2070,7 @@ class HadamardEJA(RationalBasisEuclideanJordanAlgebra): check_axioms=False, **kwargs) self.rank.set_cache(n) + self.one.set_cache( sum(self.gens()) ) @staticmethod def _max_random_instance_size(): @@ -2111,6 +2131,20 @@ class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra): sage: J0.multiplication_table() == J0.multiplication_table() True + An error is raised if the matrix `B` does not correspond to a + positive-definite bilinear form:: + + sage: B = matrix.random(QQ,2,3) + sage: J = BilinearFormEJA(B) + Traceback (most recent call last): + ... + ValueError: bilinear form is not positive-definite + sage: B = matrix.zero(QQ,3) + sage: J = BilinearFormEJA(B) + Traceback (most recent call last): + ... + ValueError: bilinear form is not positive-definite + TESTS: We can create a zero-dimensional algebra:: @@ -2151,7 +2185,7 @@ class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra): n = B.nrows() if not B.is_positive_definite(): - raise TypeError("matrix B is not positive-definite") + raise ValueError("bilinear form is not positive-definite") V = VectorSpace(field, n) mult_table = [[V.zero() for j in range(n)] for i in range(n)] @@ -2177,10 +2211,39 @@ class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra): **kwargs) self.rank.set_cache(min(n,2)) + if n == 0: + self.one.set_cache( self.zero() ) + else: + self.one.set_cache( self.monomial(0) ) + @staticmethod def _max_random_instance_size(): return 5 + @classmethod + def random_instance(cls, field=AA, **kwargs): + """ + Return a random instance of this algebra. + """ + n = ZZ.random_element(cls._max_random_instance_size() + 1) + if n.is_zero(): + B = matrix.identity(field, n) + return cls(B, field, **kwargs) + + B11 = matrix.identity(field,1) + M = matrix.random(field, n-1) + I = matrix.identity(field, n-1) + alpha = field.zero() + while alpha.is_zero(): + alpha = field.random_element().abs() + B22 = M.transpose()*M + alpha*I + + from sage.matrix.special import block_matrix + B = block_matrix(2,2, [ [B11, ZZ(0) ], + [ZZ(0), B22 ] ]) + + return cls(B, field, **kwargs) + def inner_product(self, x, y): r""" Half of the trace inner product. @@ -2200,16 +2263,11 @@ class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra): paper:: sage: set_random_seed() - sage: n = ZZ.random_element(2,5) - sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular') - sage: B11 = matrix.identity(QQ,1) - sage: B22 = M.transpose()*M - sage: B = block_matrix(2,2,[ [B11,0 ], - ....: [0, B22 ] ]) - sage: J = BilinearFormEJA(B) + sage: J = BilinearFormEJA.random_instance() + sage: n = J.dimension() sage: x = J.random_element() sage: y = J.random_element() - sage: x.inner_product(y) == (x*y).trace()/2 + sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2) True """ @@ -2272,6 +2330,16 @@ class JordanSpinEJA(BilinearFormEJA): B = matrix.identity(field, n) super(JordanSpinEJA, self).__init__(B, field, **kwargs) + @classmethod + def random_instance(cls, field=AA, **kwargs): + """ + Return a random instance of this type of algebra. + + Needed here to override the implementation for ``BilinearFormEJA``. + """ + n = ZZ.random_element(cls._max_random_instance_size() + 1) + return cls(n, field, **kwargs) + class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra): """ @@ -2311,6 +2379,7 @@ class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra): # The rank is zero using my definition, namely the dimension of the # largest subalgebra generated by any element. self.rank.set_cache(0) + self.one.set_cache( self.zero() ) @classmethod def random_instance(cls, field=AA, **kwargs):