X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=dd1bcf2584449f5b80ef13a669a28946948b3d25;hb=6efdc5031a3ae89c16a3184750fb7cf7e26b5fb9;hp=907f40d72135df42d211cdd9bb8923df6bf462e6;hpb=7c21799d680433b62d48ca79cc2ea8f27e1cd8da;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 907f40d..dd1bcf2 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -166,7 +166,8 @@ from sage.modules.free_module import FreeModule, VectorSpace from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF, PolynomialRing, QuadraticField) -from mjo.eja.eja_element import FiniteDimensionalEJAElement +from mjo.eja.eja_element import (CartesianProductEJAElement, + FiniteDimensionalEJAElement) from mjo.eja.eja_operator import FiniteDimensionalEJAOperator from mjo.eja.eja_utils import _all2list @@ -366,7 +367,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): if orthonormalize: # Now "self._matrix_span" is the vector space of our - # algebra coordinates. The variables "X1", "X2",... refer + # algebra coordinates. The variables "X0", "X1",... refer # to the entries of vectors in self._matrix_span. Thus to # convert back and forth between the orthonormal # coordinates and the given ones, we need to stick the @@ -870,7 +871,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: J = JordanSpinEJA(3) sage: p = J.characteristic_polynomial_of(); p - X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2 + X0^2 - X1^2 - X2^2 + (-2*t)*X0 + t^2 sage: xvec = J.one().to_vector() sage: p(*xvec) t^2 - 2*t + 1 @@ -919,13 +920,13 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: J = HadamardEJA(2) sage: J.coordinate_polynomial_ring() - Multivariate Polynomial Ring in X1, X2... + Multivariate Polynomial Ring in X0, X1... sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False) sage: J.coordinate_polynomial_ring() - Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6... + Multivariate Polynomial Ring in X0, X1, X2, X3, X4, X5... """ - var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) ) + var_names = tuple( "X%d" % z for z in range(self.dimension()) ) return PolynomialRing(self.base_ring(), var_names) def inner_product(self, x, y): @@ -1517,6 +1518,64 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): for idx in range(count) ) + def operator_polynomial_matrix(self): + r""" + Return the matrix of polynomials (over this algebra's + :meth:`coordinate_polynomial_ring`) that, when evaluated at + the basis coordinates of an element `x`, produces the basis + representation of `L_{x}`. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (HadamardEJA, + ....: JordanSpinEJA) + + EXAMPLES:: + + sage: J = HadamardEJA(4) + sage: L_x = J.operator_polynomial_matrix() + sage: L_x + [X0 0 0 0] + [ 0 X1 0 0] + [ 0 0 X2 0] + [ 0 0 0 X3] + sage: x = J.one() + sage: d = zip(J.coordinate_polynomial_ring().gens(), x.to_vector()) + sage: L_x.subs(dict(d)) + [1 0 0 0] + [0 1 0 0] + [0 0 1 0] + [0 0 0 1] + + :: + + sage: J = JordanSpinEJA(4) + sage: L_x = J.operator_polynomial_matrix() + sage: L_x + [X0 X1 X2 X3] + [X1 X0 0 0] + [X2 0 X0 0] + [X3 0 0 X0] + sage: x = J.one() + sage: d = zip(J.coordinate_polynomial_ring().gens(), x.to_vector()) + sage: L_x.subs(dict(d)) + [1 0 0 0] + [0 1 0 0] + [0 0 1 0] + [0 0 0 1] + + """ + R = self.coordinate_polynomial_ring() + + def L_x_i_j(i,j): + # From a result in my book, these are the entries of the + # basis representation of L_x. + return sum( v*self.monomial(k).operator().matrix()[i,j] + for (k,v) in enumerate(R.gens()) ) + + n = self.dimension() + return matrix(R, n, n, L_x_i_j) + @cached_method def _charpoly_coefficients(self): r""" @@ -1540,16 +1599,9 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): """ n = self.dimension() R = self.coordinate_polynomial_ring() - vars = R.gens() F = R.fraction_field() - def L_x_i_j(i,j): - # From a result in my book, these are the entries of the - # basis representation of L_x. - return sum( vars[k]*self.monomial(k).operator().matrix()[i,j] - for k in range(n) ) - - L_x = matrix(F, n, n, L_x_i_j) + L_x = self.operator_polynomial_matrix() r = None if self.rank.is_in_cache(): @@ -1770,7 +1822,7 @@ class RationalBasisEJA(FiniteDimensionalEJA): sage: J = JordanSpinEJA(3) sage: J._charpoly_coefficients() - (X1^2 - X2^2 - X3^2, -2*X1) + (X0^2 - X1^2 - X2^2, -2*X0) sage: a0 = J._charpoly_coefficients()[0] sage: J.base_ring() Algebraic Real Field @@ -3089,6 +3141,7 @@ class CartesianProductEJA(FiniteDimensionalEJA): sage: actual == expected # long time True """ + Element = CartesianProductEJAElement def __init__(self, factors, **kwargs): m = len(factors) if m == 0: