X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=d1c0fa2eafd5d3d5e17ccab175e16ee44c3e9d82;hb=417406c6a509462be431961a3dd1f13829b7cd96;hp=01deb1b65140675ffbc81c9c673c21e6d4a2e77f;hpb=8e4c84f17025f6c3f2d049902a6a01f954d484ee;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 01deb1b..d1c0fa2 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -826,8 +826,45 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): return cls(n, field, **kwargs) @cached_method - def rank(self): + def _charpoly_coefficients(self): + r""" + The `r` polynomial coefficients of the "characteristic polynomial + of" function. """ + n = self.dimension() + var_names = [ "X" + str(z) for z in range(1,n+1) ] + R = PolynomialRing(self.base_ring(), var_names) + vars = R.gens() + F = R.fraction_field() + + def L_x_i_j(i,j): + # From a result in my book, these are the entries of the + # basis representation of L_x. + return sum( vars[k]*self.monomial(k).operator().matrix()[i,j] + for k in range(n) ) + + L_x = matrix(F, n, n, L_x_i_j) + # Compute an extra power in case the rank is equal to + # the dimension (otherwise, we would stop at x^(r-1)). + x_powers = [ (L_x**k)*self.one().to_vector() + for k in range(n+1) ] + A = matrix.column(F, x_powers[:n]) + AE = A.extended_echelon_form() + E = AE[:,n:] + A_rref = AE[:,:n] + r = A_rref.rank() + b = x_powers[r] + + # The theory says that only the first "r" coefficients are + # nonzero, and they actually live in the original polynomial + # ring and not the fraction field. We negate them because + # in the actual characteristic polynomial, they get moved + # to the other side where x^r lives. + return -A_rref.solve_right(E*b).change_ring(R)[:r] + + @cached_method + def rank(self): + r""" Return the rank of this EJA. ALGORITHM: @@ -920,43 +957,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): 2 """ - n = self.dimension() - if n == 0: - return 0 - elif n == 1: - return 1 - - var_names = [ "X" + str(z) for z in range(1,n+1) ] - R = PolynomialRing(self.base_ring(), var_names) - vars = R.gens() - - def L_x_i_j(i,j): - # From a result in my book, these are the entries of the - # basis representation of L_x. - return sum( vars[k]*self.monomial(k).operator().matrix()[i,j] - for k in range(n) ) - - L_x = matrix(R, n, n, L_x_i_j) - x_powers = [ vars[k]*(L_x**k)*self.one().to_vector() - for k in range(n) ] - - # Can assume n >= 2 - M = matrix([x_powers[0]]) - old_rank = 1 - - for d in range(1,n): - M = matrix(M.rows() + [x_powers[d]]) - M.echelonize() - # TODO: we've basically solved the system here. - # We should save the echelonized matrix somehow - # so that it can be reused in the charpoly method. - new_rank = M.rank() - if new_rank == old_rank: - return new_rank - else: - old_rank = new_rank - - return n + return len(self._charpoly_coefficients()) def vector_space(self):