X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=c862b0d3ec00305193eb85265a7e33c556a59543;hb=fe4405d4c4e5eec48f1924fc75e6aedd08f5c938;hp=d23ae2cf93e91bdd7998fe8852c3b936e577b222;hpb=0b9c169288849507cadcfea21e58ccd307d30bb9;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index d23ae2c..c862b0d 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -85,7 +85,12 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # If the basis given to us wasn't over the field that it's # supposed to be over, fix that. Or, you know, crash. - basis = tuple( b.change_ring(field) for b in basis ) + if not cartesian_product: + # The field for a cartesian product algebra comes from one + # of its factors and is the same for all factors, so + # there's no need to "reapply" it on product algebras. + basis = tuple( b.change_ring(field) for b in basis ) + if check_axioms: # Check commutativity of the Jordan and inner-products. @@ -127,10 +132,17 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # we see in things like x = 1*e1 + 2*e2. vector_basis = basis + def flatten(b): + # flatten a vector, matrix, or cartesian product of those + # things into a long list. + if cartesian_product: + return sum(( b_i.list() for b_i in b ), []) + else: + return b.list() + degree = 0 if n > 0: - # Works on both column and square matrices... - degree = len(basis[0].list()) + degree = len(flatten(basis[0])) # Build an ambient space that fits our matrix basis when # written out as "long vectors." @@ -144,7 +156,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # Save a copy of the un-orthonormalized basis for later. # Convert it to ambient V (vector) coordinates while we're # at it, because we'd have to do it later anyway. - deortho_vector_basis = tuple( V(b.list()) for b in basis ) + deortho_vector_basis = tuple( V(flatten(b)) for b in basis ) from mjo.eja.eja_utils import gram_schmidt basis = tuple(gram_schmidt(basis, inner_product)) @@ -156,7 +168,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # Now create the vector space for the algebra, which will have # its own set of non-ambient coordinates (in terms of the # supplied basis). - vector_basis = tuple( V(b.list()) for b in basis ) + vector_basis = tuple( V(flatten(b)) for b in basis ) W = V.span_of_basis( vector_basis, check=check_axioms) if orthonormalize: @@ -188,7 +200,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # The jordan product returns a matrixy answer, so we # have to convert it to the algebra coordinates. elt = jordan_product(q_i, q_j) - elt = W.coordinate_vector(V(elt.list())) + elt = W.coordinate_vector(V(flatten(elt))) self._multiplication_table[i][j] = self.from_vector(elt) if not orthonormalize: @@ -293,22 +305,32 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: y = J.random_element() sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2) True + """ B = self._inner_product_matrix return (B*x.to_vector()).inner_product(y.to_vector()) - def _is_commutative(self): + def is_associative(self): r""" - Whether or not this algebra's multiplication table is commutative. + Return whether or not this algebra's Jordan product is associative. + + SETUP:: + + sage: from mjo.eja.eja_algebra import ComplexHermitianEJA + + EXAMPLES:: + + sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False) + sage: J.is_associative() + False + sage: x = sum(J.gens()) + sage: A = x.subalgebra_generated_by(orthonormalize=False) + sage: A.is_associative() + True - This method should of course always return ``True``, unless - this algebra was constructed with ``check_axioms=False`` and - passed an invalid multiplication table. """ - return all( self.product_on_basis(i,j) == self.product_on_basis(i,j) - for i in range(self.dimension()) - for j in range(self.dimension()) ) + return "Associative" in self.category().axioms() def _is_jordanian(self): r""" @@ -317,7 +339,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): We only check one arrangement of `x` and `y`, so for a ``True`` result to be truly true, you should also check - :meth:`_is_commutative`. This method should of course always + :meth:`is_commutative`. This method should of course always return ``True``, unless this algebra was constructed with ``check_axioms=False`` and passed an invalid multiplication table. """ @@ -2372,7 +2394,11 @@ class HadamardEJA(ConcreteEJA): if "check_axioms" not in kwargs: kwargs["check_axioms"] = False column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() ) - super().__init__(column_basis, jordan_product, inner_product, **kwargs) + super().__init__(column_basis, + jordan_product, + inner_product, + associative=True, + **kwargs) self.rank.set_cache(n) if n == 0: @@ -2767,6 +2793,25 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, sage: J.rank() == J1.rank() + J2.rank() True + The product algebra will be associative if and only if all of its + components are associative:: + + sage: J1 = HadamardEJA(2) + sage: J1.is_associative() + True + sage: J2 = HadamardEJA(3) + sage: J2.is_associative() + True + sage: J3 = RealSymmetricEJA(3) + sage: J3.is_associative() + False + sage: CP1 = cartesian_product([J1,J2]) + sage: CP1.is_associative() + True + sage: CP2 = cartesian_product([J1,J3]) + sage: CP2.is_associative() + False + TESTS: All factors must share the same base field:: @@ -2804,31 +2849,42 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, True """ - def __init__(self, modules, **kwargs): + def __init__(self, algebras, **kwargs): CombinatorialFreeModule_CartesianProduct.__init__(self, - modules, + algebras, **kwargs) - field = modules[0].base_ring() - if not all( J.base_ring() == field for J in modules ): + field = algebras[0].base_ring() + if not all( J.base_ring() == field for J in algebras ): raise ValueError("all factors must share the same base field") - basis = tuple( b.to_vector().column() for b in self.basis() ) + associative = all( m.is_associative() for m in algebras ) + + # The definition of matrix_space() and self.basis() relies + # only on the stuff in the CFM_CartesianProduct class, which + # we've already initialized. + Js = self.cartesian_factors() + m = len(Js) + MS = self.matrix_space() + basis = tuple( + MS(tuple( self.cartesian_projection(i)(b).to_matrix() + for i in range(m) )) + for b in self.basis() + ) - # Define jordan/inner products that operate on the basis. - def jordan_product(x_mat,y_mat): - x = self.from_vector(_mat2vec(x_mat)) - y = self.from_vector(_mat2vec(y_mat)) - return self.cartesian_jordan_product(x,y).to_vector().column() + # Define jordan/inner products that operate on that matrix_basis. + def jordan_product(x,y): + return MS(tuple( + (Js[i](x[i])*Js[i](y[i])).to_matrix() for i in range(m) + )) - def inner_product(x_mat, y_mat): - x = self.from_vector(_mat2vec(x_mat)) - y = self.from_vector(_mat2vec(y_mat)) - return self.cartesian_inner_product(x,y) + def inner_product(x, y): + return sum( + Js[i](x[i]).inner_product(Js[i](y[i])) for i in range(m) + ) - # Use whatever category the superclass came up with. Usually - # some join of the EJA and Cartesian product - # categories. There's no need to check the field since it - # already came from an EJA. + # There's no need to check the field since it already came + # from an EJA. Likewise the axioms are guaranteed to be + # satisfied, unless the guy writing this class sucks. # # If you want the basis to be orthonormalized, orthonormalize # the factors. @@ -2838,27 +2894,14 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, inner_product, field=field, orthonormalize=False, + associative=associative, cartesian_product=True, check_field=False, check_axioms=False) - ones = tuple(J.one() for J in modules) + ones = tuple(J.one() for J in algebras) self.one.set_cache(self._cartesian_product_of_elements(ones)) - self.rank.set_cache(sum(J.rank() for J in modules)) - - # Now that everything else is ready, we clobber our computed - # matrix basis with the "correct" one consisting of ordered - # tuples. Since we didn't orthonormalize our basis, we can - # create these from the basis that was handed to us; that is, - # we don't need to use the one that the earlier __init__() - # method came up with. - m = len(self.cartesian_factors()) - MS = self.matrix_space() - self._matrix_basis = tuple( - MS(tuple( self.cartesian_projection(i)(b).to_matrix() - for i in range(m) )) - for b in self.basis() - ) + self.rank.set_cache(sum(J.rank() for J in algebras)) def matrix_space(self): r""" @@ -3177,4 +3220,11 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA + random_eja = ConcreteEJA.random_instance +#def random_eja(*args, **kwargs): +# from sage.categories.cartesian_product import cartesian_product +# J1 = HadamardEJA(1, **kwargs) +# J2 = RealSymmetricEJA(2, **kwargs) +# J = cartesian_product([J1,J2]) +# return J