X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=c0dc408df3a7160a94c7cadcba6a5e35d78ba4fb;hb=8fd6cc17cd935e5537bcea3aed8892c3ca65b40d;hp=907f40d72135df42d211cdd9bb8923df6bf462e6;hpb=7c21799d680433b62d48ca79cc2ea8f27e1cd8da;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 907f40d..c0dc408 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -166,7 +166,8 @@ from sage.modules.free_module import FreeModule, VectorSpace from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF, PolynomialRing, QuadraticField) -from mjo.eja.eja_element import FiniteDimensionalEJAElement +from mjo.eja.eja_element import (CartesianProductEJAElement, + FiniteDimensionalEJAElement) from mjo.eja.eja_operator import FiniteDimensionalEJAOperator from mjo.eja.eja_utils import _all2list @@ -366,7 +367,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): if orthonormalize: # Now "self._matrix_span" is the vector space of our - # algebra coordinates. The variables "X1", "X2",... refer + # algebra coordinates. The variables "X0", "X1",... refer # to the entries of vectors in self._matrix_span. Thus to # convert back and forth between the orthonormal # coordinates and the given ones, we need to stick the @@ -870,7 +871,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: J = JordanSpinEJA(3) sage: p = J.characteristic_polynomial_of(); p - X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2 + X0^2 - X1^2 - X2^2 + (-2*t)*X0 + t^2 sage: xvec = J.one().to_vector() sage: p(*xvec) t^2 - 2*t + 1 @@ -919,13 +920,13 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: J = HadamardEJA(2) sage: J.coordinate_polynomial_ring() - Multivariate Polynomial Ring in X1, X2... + Multivariate Polynomial Ring in X0, X1... sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False) sage: J.coordinate_polynomial_ring() - Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6... + Multivariate Polynomial Ring in X0, X1, X2, X3, X4, X5... """ - var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) ) + var_names = tuple( "X%d" % z for z in range(self.dimension()) ) return PolynomialRing(self.base_ring(), var_names) def inner_product(self, x, y): @@ -1770,7 +1771,7 @@ class RationalBasisEJA(FiniteDimensionalEJA): sage: J = JordanSpinEJA(3) sage: J._charpoly_coefficients() - (X1^2 - X2^2 - X3^2, -2*X1) + (X0^2 - X1^2 - X2^2, -2*X0) sage: a0 = J._charpoly_coefficients()[0] sage: J.base_ring() Algebraic Real Field @@ -3089,6 +3090,7 @@ class CartesianProductEJA(FiniteDimensionalEJA): sage: actual == expected # long time True """ + Element = CartesianProductEJAElement def __init__(self, factors, **kwargs): m = len(factors) if m == 0: