X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=7f7b1f9f1c09703a2d8f48e295b203604fa5556c;hb=ef91dedb7fecddd4c0a5472e501188739b3d3d88;hp=f327bf51aada40b33fd05fb0d1c38c124d4b545e;hpb=debb0160c47109a5f2060bffd2c618f2a3a19551;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index f327bf5..7f7b1f9 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -61,7 +61,10 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): """ SETUP:: - sage: from mjo.eja.eja_algebra import (JordanSpinEJA, random_eja) + sage: from mjo.eja.eja_algebra import ( + ....: FiniteDimensionalEuclideanJordanAlgebra, + ....: JordanSpinEJA, + ....: random_eja) EXAMPLES: @@ -75,13 +78,20 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): TESTS: - The ``field`` we're given must be real:: + The ``field`` we're given must be real with ``check=True``:: sage: JordanSpinEJA(2,QQbar) Traceback (most recent call last): ... ValueError: field is not real + The multiplication table must be square with ``check=True``:: + + sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),())) + Traceback (most recent call last): + ... + ValueError: multiplication table is not square + """ if check: if not field.is_subring(RR): @@ -96,9 +106,15 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): category = MagmaticAlgebras(field).FiniteDimensional() category = category.WithBasis().Unital() + # The multiplication table had better be square + n = len(mult_table) + if check: + if not all( len(l) == n for l in mult_table ): + raise ValueError("multiplication table is not square") + fda = super(FiniteDimensionalEuclideanJordanAlgebra, self) fda.__init__(field, - range(len(mult_table)), + range(n), prefix=prefix, category=category) self.print_options(bracket='') @@ -114,6 +130,13 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): for ls in mult_table ] + if check: + if not self._is_commutative(): + raise ValueError("algebra is not commutative") + if not self._is_jordanian(): + raise ValueError("Jordan identity does not hold") + if not self._inner_product_is_associative(): + raise ValueError("inner product is not associative") def _element_constructor_(self, elt): """ @@ -235,6 +258,67 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): def product_on_basis(self, i, j): return self._multiplication_table[i][j] + def _is_commutative(self): + r""" + Whether or not this algebra's multiplication table is commutative. + + This method should of course always return ``True``, unless + this algebra was constructed with ``check=False`` and passed + an invalid multiplication table. + """ + return all( self.product_on_basis(i,j) == self.product_on_basis(i,j) + for i in range(self.dimension()) + for j in range(self.dimension()) ) + + def _is_jordanian(self): + r""" + Whether or not this algebra's multiplication table respects the + Jordan identity `(x^{2})(xy) = x(x^{2}y)`. + + We only check one arrangement of `x` and `y`, so for a + ``True`` result to be truly true, you should also check + :meth:`_is_commutative`. This method should of course always + return ``True``, unless this algebra was constructed with + ``check=False`` and passed an invalid multiplication table. + """ + return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j)) + == + (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j)) + for i in range(self.dimension()) + for j in range(self.dimension()) ) + + def _inner_product_is_associative(self): + r""" + Return whether or not this algebra's inner product `B` is + associative; that is, whether or not `B(xy,z) = B(x,yz)`. + + This method should of course always return ``True``, unless + this algebra was constructed with ``check=False`` and passed + an invalid multiplication table. + """ + + # Used to check whether or not something is zero in an inexact + # ring. This number is sufficient to allow the construction of + # QuaternionHermitianEJA(2, RDF) with check=True. + epsilon = 1e-16 + + for i in range(self.dimension()): + for j in range(self.dimension()): + for k in range(self.dimension()): + x = self.monomial(i) + y = self.monomial(j) + z = self.monomial(k) + diff = (x*y).inner_product(z) - x.inner_product(y*z) + + if self.base_ring().is_exact(): + if diff != 0: + return False + else: + if diff.abs() > epsilon: + return False + + return True + @cached_method def characteristic_polynomial_of(self): """