X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=79ccc7904830dc739e4af0a532c1bace2a801936;hb=9528af011cbb4d5e6a38ef972e0d14e7928d5eef;hp=8ab1381665711ee3c09f1a0e3387c9e4dd85bcf3;hpb=ed093213197d2ffa48849b0089ebe391b7574b93;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 8ab1381..79ccc79 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -5,7 +5,7 @@ are used in optimization, and have some additional nice methods beyond what can be supported in a general Jordan Algebra. """ -from itertools import repeat +from itertools import izip, repeat from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra from sage.categories.magmatic_algebras import MagmaticAlgebras @@ -409,7 +409,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): # assign a[r] goes out-of-bounds. a.append(1) # corresponds to x^r - return sum( a[k]*(t**k) for k in range(len(a)) ) + return sum( a[k]*(t**k) for k in xrange(len(a)) ) def inner_product(self, x, y): @@ -491,7 +491,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): """ M = list(self._multiplication_table) # copy - for i in range(len(M)): + for i in xrange(len(M)): # M had better be "square" M[i] = [self.monomial(i)] + M[i] M = [["*"] + list(self.gens())] + M @@ -799,8 +799,8 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra): """ def __init__(self, n, field=QQ, **kwargs): V = VectorSpace(field, n) - mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ] - for i in range(n) ] + mult_table = [ [ V.gen(i)*(i == j) for j in xrange(n) ] + for i in xrange(n) ] fdeja = super(RealCartesianProductEJA, self) return fdeja.__init__(field, mult_table, rank=n, **kwargs) @@ -938,7 +938,7 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): (_,x,_,_) = J._charpoly_matrix_system() p = J._charpoly_coeff(i) # p might be missing some vars, have to substitute "optionally" - pairs = zip(x.base_ring().gens(), self._basis_normalizers) + pairs = izip(x.base_ring().gens(), self._basis_normalizers) substitutions = { v: v*c for (v,c) in pairs } return p.subs(substitutions) @@ -964,9 +964,9 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): V = VectorSpace(field, dimension**2) W = V.span_of_basis( _mat2vec(s) for s in basis ) n = len(basis) - mult_table = [[W.zero() for j in range(n)] for i in range(n)] - for i in range(n): - for j in range(n): + mult_table = [[W.zero() for j in xrange(n)] for i in xrange(n)] + for i in xrange(n): + for j in xrange(n): mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry)) @@ -1737,9 +1737,9 @@ class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra): """ def __init__(self, n, field=QQ, **kwargs): V = VectorSpace(field, n) - mult_table = [[V.zero() for j in range(n)] for i in range(n)] - for i in range(n): - for j in range(n): + mult_table = [[V.zero() for j in xrange(n)] for i in xrange(n)] + for i in xrange(n): + for j in xrange(n): x = V.gen(i) y = V.gen(j) x0 = x[0]