X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=799490044dbb4d0834577f435afd2dbc89429baf;hb=78bee5c30c1cd2828d9834fc7d652db21331d4fe;hp=3b64ddd7374d8931f80fdefe4b0fb1734b682995;hpb=857eeec29a9b89b0e4f711476771c935757fa8dc;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 3b64ddd..7994900 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -112,6 +112,23 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): generally rules out using the rationals as your ``field``, but is required for spectral decompositions. + SETUP:: + + sage: from mjo.eja.eja_algebra import random_eja + + TESTS: + + We should compute that an element subalgebra is associative even + if we circumvent the element method:: + + sage: set_random_seed() + sage: J = random_eja(field=QQ,orthonormalize=False) + sage: x = J.random_element() + sage: A = x.subalgebra_generated_by(orthonormalize=False) + sage: basis = tuple(b.superalgebra_element() for b in A.basis()) + sage: J.subalgebra(basis, orthonormalize=False).is_associative() + True + """ Element = FiniteDimensionalEJAElement @@ -121,23 +138,13 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): inner_product, field=AA, orthonormalize=True, - associative=False, + associative=None, cartesian_product=False, check_field=True, check_axioms=True, prefix='e'): - # Keep track of whether or not the matrix basis consists of - # tuples, since we need special cases for them damned near - # everywhere. This is INDEPENDENT of whether or not the - # algebra is a cartesian product, since a subalgebra of a - # cartesian product will have a basis of tuples, but will not - # in general itself be a cartesian product algebra. - self._matrix_basis_is_cartesian = False n = len(basis) - if n > 0: - if hasattr(basis[0], 'cartesian_factors'): - self._matrix_basis_is_cartesian = True if check_field: if not field.is_subring(RR): @@ -146,20 +153,10 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # we've specified a real embedding. raise ValueError("scalar field is not real") + from mjo.eja.eja_utils import _change_ring # If the basis given to us wasn't over the field that it's # supposed to be over, fix that. Or, you know, crash. - if not cartesian_product: - # The field for a cartesian product algebra comes from one - # of its factors and is the same for all factors, so - # there's no need to "reapply" it on product algebras. - if self._matrix_basis_is_cartesian: - # OK since if n == 0, the basis does not consist of tuples. - P = basis[0].parent() - basis = tuple( P(tuple(b_i.change_ring(field) for b_i in b)) - for b in basis ) - else: - basis = tuple( b.change_ring(field) for b in basis ) - + basis = tuple( _change_ring(b, field) for b in basis ) if check_axioms: # Check commutativity of the Jordan and inner-products. @@ -180,11 +177,26 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): category = MagmaticAlgebras(field).FiniteDimensional() category = category.WithBasis().Unital().Commutative() + if associative is None: + # We should figure it out. As with check_axioms, we have to do + # this without the help of the _jordan_product_is_associative() + # method because we need to know the category before we + # initialize the algebra. + associative = all( jordan_product(jordan_product(bi,bj),bk) + == + jordan_product(bi,jordan_product(bj,bk)) + for bi in basis + for bj in basis + for bk in basis) + if associative: # Element subalgebras can take advantage of this. category = category.Associative() if cartesian_product: - category = category.CartesianProducts() + # Use join() here because otherwise we only get the + # "Cartesian product of..." and not the things themselves. + category = category.join([category, + category.CartesianProducts()]) # Call the superclass constructor so that we can use its from_vector() # method to build our multiplication table. @@ -332,8 +344,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: if n > 0: ....: i = ZZ.random_element(n) ....: j = ZZ.random_element(n) - ....: ei = J.gens()[i] - ....: ej = J.gens()[j] + ....: ei = J.monomial(i) + ....: ej = J.monomial(j) ....: ei_ej = J.product_on_basis(i,j) sage: ei*ej == ei_ej True @@ -431,9 +443,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): this algebra was constructed with ``check_axioms=False`` and passed an invalid multiplication table. """ - return all( self.product_on_basis(i,j) == self.product_on_basis(i,j) - for i in range(self.dimension()) - for j in range(self.dimension()) ) + return all( x*y == y*x for x in self.gens() for y in self.gens() ) def _is_jordanian(self): r""" @@ -446,9 +456,9 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): return ``True``, unless this algebra was constructed with ``check_axioms=False`` and passed an invalid multiplication table. """ - return all( (self.gens()[i]**2)*(self.gens()[i]*self.gens()[j]) + return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j)) == - (self.gens()[i])*((self.gens()[i]**2)*self.gens()[j]) + (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j)) for i in range(self.dimension()) for j in range(self.dimension()) ) @@ -464,7 +474,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): SETUP:: - sage: from mjo.eja.eja_algebra import (RealSymmetricEJA, + sage: from mjo.eja.eja_algebra import (random_eja, + ....: RealSymmetricEJA, ....: ComplexHermitianEJA, ....: QuaternionHermitianEJA) @@ -498,6 +509,16 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: A._jordan_product_is_associative() True + TESTS: + + The values we've presupplied to the constructors agree with + the computation:: + + sage: set_random_seed() + sage: J = random_eja() + sage: J.is_associative() == J._jordan_product_is_associative() + True + """ R = self.base_ring() @@ -517,9 +538,9 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): for i in range(self.dimension()): for j in range(self.dimension()): for k in range(self.dimension()): - x = self.gens()[i] - y = self.gens()[j] - z = self.gens()[k] + x = self.monomial(i) + y = self.monomial(j) + z = self.monomial(k) diff = (x*y)*z - x*(y*z) if diff.norm() > epsilon: @@ -548,9 +569,9 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): for i in range(self.dimension()): for j in range(self.dimension()): for k in range(self.dimension()): - x = self.gens()[i] - y = self.gens()[j] - z = self.gens()[k] + x = self.monomial(i) + y = self.monomial(j) + z = self.monomial(k) diff = (x*y).inner_product(z) - x.inner_product(y*z) if diff.abs() > epsilon: @@ -568,7 +589,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): SETUP:: - sage: from mjo.eja.eja_algebra import (JordanSpinEJA, + sage: from mjo.eja.eja_algebra import (random_eja, + ....: JordanSpinEJA, ....: HadamardEJA, ....: RealSymmetricEJA) @@ -597,22 +619,17 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: J2 = RealSymmetricEJA(2) sage: J = cartesian_product([J1,J2]) sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) ) - e(0, 1) + e(1, 2) + e1 + e5 TESTS: - Ensure that we can convert any element of the two non-matrix - simple algebras (whose matrix representations are columns) - back and forth faithfully:: + Ensure that we can convert any element back and forth + faithfully between its matrix and algebra representations:: sage: set_random_seed() - sage: J = HadamardEJA.random_instance() - sage: x = J.random_element() - sage: J(x.to_vector().column()) == x - True - sage: J = JordanSpinEJA.random_instance() + sage: J = random_eja() sage: x = J.random_element() - sage: J(x.to_vector().column()) == x + sage: J(x.to_matrix()) == x True We cannot coerce elements between algebras just because their @@ -628,7 +645,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): Traceback (most recent call last): ... ValueError: not an element of this algebra - """ msg = "not an element of this algebra" if elt in self.base_ring(): @@ -896,7 +912,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # And to each subsequent row, prepend an entry that belongs to # the left-side "header column." - M += [ [self.gens()[i]] + [ self.product_on_basis(i,j) + M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j) for j in range(n) ] for i in range(n) ] @@ -1398,7 +1414,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): def L_x_i_j(i,j): # From a result in my book, these are the entries of the # basis representation of L_x. - return sum( vars[k]*self.gens()[k].operator().matrix()[i,j] + return sum( vars[k]*self.monomial(k).operator().matrix()[i,j] for k in range(n) ) L_x = matrix(F, n, n, L_x_i_j) @@ -1567,6 +1583,13 @@ class RationalBasisEJA(FiniteDimensionalEJA): if not all( all(b_i in QQ for b_i in b.list()) for b in basis ): raise TypeError("basis not rational") + super().__init__(basis, + jordan_product, + inner_product, + field=field, + check_field=check_field, + **kwargs) + self._rational_algebra = None if field is not QQ: # There's no point in constructing the extra algebra if this @@ -1580,17 +1603,11 @@ class RationalBasisEJA(FiniteDimensionalEJA): jordan_product, inner_product, field=QQ, + associative=self.is_associative(), orthonormalize=False, check_field=False, check_axioms=False) - super().__init__(basis, - jordan_product, - inner_product, - field=field, - check_field=check_field, - **kwargs) - @cached_method def _charpoly_coefficients(self): r""" @@ -1954,10 +1971,15 @@ class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA): # if the user passes check_axioms=True. if "check_axioms" not in kwargs: kwargs["check_axioms"] = False - super(RealSymmetricEJA, self).__init__(self._denormalized_basis(n), - self.jordan_product, - self.trace_inner_product, - **kwargs) + associative = False + if n <= 1: + associative = True + + super().__init__(self._denormalized_basis(n), + self.jordan_product, + self.trace_inner_product, + associative=associative, + **kwargs) # TODO: this could be factored out somehow, but is left here # because the MatrixEJA is not presently a subclass of the @@ -2047,7 +2069,7 @@ class ComplexMatrixEJA(MatrixEJA): True """ - super(ComplexMatrixEJA,cls).real_embed(M) + super().real_embed(M) n = M.nrows() # We don't need any adjoined elements... @@ -2094,7 +2116,7 @@ class ComplexMatrixEJA(MatrixEJA): True """ - super(ComplexMatrixEJA,cls).real_unembed(M) + super().real_unembed(M) n = ZZ(M.nrows()) d = cls.dimension_over_reals() F = cls.complex_extension(M.base_ring()) @@ -2242,10 +2264,15 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA): # if the user passes check_axioms=True. if "check_axioms" not in kwargs: kwargs["check_axioms"] = False - super(ComplexHermitianEJA, self).__init__(self._denormalized_basis(n), - self.jordan_product, - self.trace_inner_product, - **kwargs) + associative = False + if n <= 1: + associative = True + + super().__init__(self._denormalized_basis(n), + self.jordan_product, + self.trace_inner_product, + associative=associative, + **kwargs) # TODO: this could be factored out somehow, but is left here # because the MatrixEJA is not presently a subclass of the # FDEJA class that defines rank() and one(). @@ -2328,7 +2355,7 @@ class QuaternionMatrixEJA(MatrixEJA): True """ - super(QuaternionMatrixEJA,cls).real_embed(M) + super().real_embed(M) quaternions = M.base_ring() n = M.nrows() @@ -2383,7 +2410,7 @@ class QuaternionMatrixEJA(MatrixEJA): True """ - super(QuaternionMatrixEJA,cls).real_unembed(M) + super().real_unembed(M) n = ZZ(M.nrows()) d = cls.dimension_over_reals() @@ -2548,10 +2575,16 @@ class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA): # if the user passes check_axioms=True. if "check_axioms" not in kwargs: kwargs["check_axioms"] = False - super(QuaternionHermitianEJA, self).__init__(self._denormalized_basis(n), - self.jordan_product, - self.trace_inner_product, - **kwargs) + associative = False + if n <= 1: + associative = True + + super().__init__(self._denormalized_basis(n), + self.jordan_product, + self.trace_inner_product, + associative=associative, + **kwargs) + # TODO: this could be factored out somehow, but is left here # because the MatrixEJA is not presently a subclass of the # FDEJA class that defines rank() and one(). @@ -2777,10 +2810,17 @@ class BilinearFormEJA(ConcreteEJA): n = B.nrows() column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() ) - super(BilinearFormEJA, self).__init__(column_basis, - jordan_product, - inner_product, - **kwargs) + + # TODO: I haven't actually checked this, but it seems legit. + associative = False + if n <= 2: + associative = True + + super().__init__(column_basis, + jordan_product, + inner_product, + associative=associative, + **kwargs) # The rank of this algebra is two, unless we're in a # one-dimensional ambient space (because the rank is bounded @@ -2885,7 +2925,7 @@ class JordanSpinEJA(BilinearFormEJA): # But also don't pass check_field=False here, because the user # can pass in a field! - super(JordanSpinEJA, self).__init__(B, **kwargs) + super().__init__(B, **kwargs) @staticmethod def _max_random_instance_size(): @@ -2943,10 +2983,12 @@ class TrivialEJA(ConcreteEJA): if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False if "check_axioms" not in kwargs: kwargs["check_axioms"] = False - super(TrivialEJA, self).__init__(basis, - jordan_product, - inner_product, - **kwargs) + super().__init__(basis, + jordan_product, + inner_product, + associative=True, + **kwargs) + # The rank is zero using my definition, namely the dimension of the # largest subalgebra generated by any element. self.rank.set_cache(0) @@ -2959,8 +3001,7 @@ class TrivialEJA(ConcreteEJA): return cls(**kwargs) -class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, - FiniteDimensionalEJA): +class CartesianProductEJA(FiniteDimensionalEJA): r""" The external (orthogonal) direct sum of two or more Euclidean Jordan algebras. Every Euclidean Jordan algebra decomposes into an @@ -3056,6 +3097,33 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, sage: CP2.is_associative() False + Cartesian products of Cartesian products work:: + + sage: J1 = JordanSpinEJA(1) + sage: J2 = JordanSpinEJA(1) + sage: J3 = JordanSpinEJA(1) + sage: J = cartesian_product([J1,cartesian_product([J2,J3])]) + sage: J.multiplication_table() + +----++----+----+----+ + | * || e0 | e1 | e2 | + +====++====+====+====+ + | e0 || e0 | 0 | 0 | + +----++----+----+----+ + | e1 || 0 | e1 | 0 | + +----++----+----+----+ + | e2 || 0 | 0 | e2 | + +----++----+----+----+ + sage: HadamardEJA(3).multiplication_table() + +----++----+----+----+ + | * || e0 | e1 | e2 | + +====++====+====+====+ + | e0 || e0 | 0 | 0 | + +----++----+----+----+ + | e1 || 0 | e1 | 0 | + +----++----+----+----+ + | e2 || 0 | 0 | e2 | + +----++----+----+----+ + TESTS: All factors must share the same base field:: @@ -3083,37 +3151,41 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, Element = FiniteDimensionalEJAElement - def __init__(self, algebras, **kwargs): - CombinatorialFreeModule_CartesianProduct.__init__(self, - algebras, - **kwargs) - field = algebras[0].base_ring() - if not all( J.base_ring() == field for J in algebras ): + def __init__(self, factors, **kwargs): + m = len(factors) + if m == 0: + return TrivialEJA() + + self._sets = factors + + field = factors[0].base_ring() + if not all( J.base_ring() == field for J in factors ): raise ValueError("all factors must share the same base field") - associative = all( m.is_associative() for m in algebras ) + associative = all( f.is_associative() for f in factors ) - # The definition of matrix_space() and self.basis() relies - # only on the stuff in the CFM_CartesianProduct class, which - # we've already initialized. - Js = self.cartesian_factors() - m = len(Js) MS = self.matrix_space() - basis = tuple( - MS(tuple( self.cartesian_projection(i)(b).to_matrix() - for i in range(m) )) - for b in self.basis() - ) + basis = [] + zero = MS.zero() + for i in range(m): + for b in factors[i].matrix_basis(): + z = list(zero) + z[i] = b + basis.append(z) + + basis = tuple( MS(b) for b in basis ) # Define jordan/inner products that operate on that matrix_basis. def jordan_product(x,y): return MS(tuple( - (Js[i](x[i])*Js[i](y[i])).to_matrix() for i in range(m) + (factors[i](x[i])*factors[i](y[i])).to_matrix() + for i in range(m) )) def inner_product(x, y): return sum( - Js[i](x[i]).inner_product(Js[i](y[i])) for i in range(m) + factors[i](x[i]).inner_product(factors[i](y[i])) + for i in range(m) ) # There's no need to check the field since it already came @@ -3133,9 +3205,25 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, check_field=False, check_axioms=False) - ones = tuple(J.one() for J in algebras) - self.one.set_cache(self._cartesian_product_of_elements(ones)) - self.rank.set_cache(sum(J.rank() for J in algebras)) + ones = tuple(J.one().to_matrix() for J in factors) + self.one.set_cache(self(ones)) + self.rank.set_cache(sum(J.rank() for J in factors)) + + def cartesian_factors(self): + # Copy/pasted from CombinatorialFreeModule_CartesianProduct. + return self._sets + + def cartesian_factor(self, i): + r""" + Return the ``i``th factor of this algebra. + """ + return self._sets[i] + + def _repr_(self): + # Copy/pasted from CombinatorialFreeModule_CartesianProduct. + from sage.categories.cartesian_product import cartesian_product + return cartesian_product.symbol.join("%s" % factor + for factor in self._sets) def matrix_space(self): r""" @@ -3232,9 +3320,12 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, True """ - Ji = self.cartesian_factors()[i] - # Requires the fix on Trac 31421/31422 to work! - Pi = super().cartesian_projection(i) + offset = sum( self.cartesian_factor(k).dimension() + for k in range(i) ) + Ji = self.cartesian_factor(i) + Pi = self._module_morphism(lambda j: Ji.monomial(j - offset), + codomain=Ji) + return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix()) @cached_method @@ -3340,9 +3431,11 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, True """ - Ji = self.cartesian_factors()[i] - # Requires the fix on Trac 31421/31422 to work! - Ei = super().cartesian_embedding(i) + offset = sum( self.cartesian_factor(k).dimension() + for k in range(i) ) + Ji = self.cartesian_factor(i) + Ei = Ji._module_morphism(lambda j: self.monomial(j + offset), + codomain=self) return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix()) @@ -3388,3 +3481,16 @@ class RationalBasisCartesianProductEJA(CartesianProductEJA, RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA random_eja = ConcreteEJA.random_instance + +# def random_eja(*args, **kwargs): +# J1 = ConcreteEJA.random_instance(*args, **kwargs) + +# # This might make Cartesian products appear roughly as often as +# # any other ConcreteEJA. +# if ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1) == 0: +# # Use random_eja() again so we can get more than two factors. +# J2 = random_eja(*args, **kwargs) +# J = cartesian_product([J1,J2]) +# return J +# else: +# return J1