X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=79187594472d82e24a0b700305b7ddfc7b192536;hb=b259821a73cb75a6d5a81d13256802be023b0fa9;hp=ee2b52665e8a7d73b50fb4e159430627bcf8b36b;hpb=63d9a1be5861241fb7f02838a74589cf56c2548e;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index ee2b526..7918759 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -170,6 +170,17 @@ from mjo.eja.eja_element import FiniteDimensionalEJAElement from mjo.eja.eja_operator import FiniteDimensionalEJAOperator from mjo.eja.eja_utils import _all2list, _mat2vec +def EuclideanJordanAlgebras(field): + r""" + The category of Euclidean Jordan algebras over ``field``, which + must be a subfield of the real numbers. For now this is just a + convenient wrapper around all of the other category axioms that + apply to all EJAs. + """ + category = MagmaticAlgebras(field).FiniteDimensional() + category = category.WithBasis().Unital().Commutative() + return category + class FiniteDimensionalEJA(CombinatorialFreeModule): r""" A finite-dimensional Euclidean Jordan algebra. @@ -228,6 +239,26 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): """ Element = FiniteDimensionalEJAElement + @staticmethod + def _check_input_field(field): + if not field.is_subring(RR): + # Note: this does return true for the real algebraic + # field, the rationals, and any quadratic field where + # we've specified a real embedding. + raise ValueError("scalar field is not real") + + @staticmethod + def _check_input_axioms(basis, jordan_product, inner_product): + if not all( jordan_product(bi,bj) == jordan_product(bj,bi) + for bi in basis + for bj in basis ): + raise ValueError("Jordan product is not commutative") + + if not all( inner_product(bi,bj) == inner_product(bj,bi) + for bi in basis + for bj in basis ): + raise ValueError("inner-product is not commutative") + def __init__(self, basis, jordan_product, @@ -244,30 +275,14 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): n = len(basis) if check_field: - if not field.is_subring(RR): - # Note: this does return true for the real algebraic - # field, the rationals, and any quadratic field where - # we've specified a real embedding. - raise ValueError("scalar field is not real") + self._check_input_field(field) if check_axioms: # Check commutativity of the Jordan and inner-products. # This has to be done before we build the multiplication # and inner-product tables/matrices, because we take # advantage of symmetry in the process. - if not all( jordan_product(bi,bj) == jordan_product(bj,bi) - for bi in basis - for bj in basis ): - raise ValueError("Jordan product is not commutative") - - if not all( inner_product(bi,bj) == inner_product(bj,bi) - for bi in basis - for bj in basis ): - raise ValueError("inner-product is not commutative") - - - category = MagmaticAlgebras(field).FiniteDimensional() - category = category.WithBasis().Unital().Commutative() + self._check_input_axioms(basis, jordan_product, inner_product) if n <= 1: # All zero- and one-dimensional algebras are just the real @@ -286,6 +301,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): for bj in basis for bk in basis) + category = EuclideanJordanAlgebras(field) + if associative: # Element subalgebras can take advantage of this. category = category.Associative() @@ -347,14 +364,19 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # its own set of non-ambient coordinates (in terms of the # supplied basis). vector_basis = tuple( V(_all2list(b)) for b in basis ) - W = V.span_of_basis( vector_basis, check=check_axioms) + + # Save the span of our matrix basis (when written out as long + # vectors) because otherwise we'll have to reconstruct it + # every time we want to coerce a matrix into the algebra. + self._matrix_span = V.span_of_basis( vector_basis, check=check_axioms) if orthonormalize: - # Now "W" is the vector space of our algebra coordinates. The - # variables "X1", "X2",... refer to the entries of vectors in - # W. Thus to convert back and forth between the orthonormal - # coordinates and the given ones, we need to stick the original - # basis in W. + # Now "self._matrix_span" is the vector space of our + # algebra coordinates. The variables "X1", "X2",... refer + # to the entries of vectors in self._matrix_span. Thus to + # convert back and forth between the orthonormal + # coordinates and the given ones, we need to stick the + # original basis in self._matrix_span. U = V.span_of_basis( deortho_vector_basis, check=check_axioms) self._deortho_matrix = matrix.column( U.coordinate_vector(q) for q in vector_basis ) @@ -378,7 +400,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # The jordan product returns a matrixy answer, so we # have to convert it to the algebra coordinates. elt = jordan_product(q_i, q_j) - elt = W.coordinate_vector(V(_all2list(elt))) + elt = self._matrix_span.coordinate_vector(V(_all2list(elt))) self._multiplication_table[i][j] = self.from_vector(elt) if not orthonormalize: @@ -685,8 +707,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): def _element_constructor_(self, elt): """ - Construct an element of this algebra from its vector or matrix - representation. + Construct an element of this algebra or a subalgebra from its + EJA element, vector, or matrix representation. This gets called only after the parent element _call_ method fails to find a coercion for the argument. @@ -725,6 +747,16 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) ) b1 + b5 + Subalgebra elements are embedded into the superalgebra:: + + sage: J = JordanSpinEJA(3) + sage: J.one() + b0 + sage: x = sum(J.gens()) + sage: A = x.subalgebra_generated_by() + sage: J(A.one()) + b0 + TESTS: Ensure that we can convert any element back and forth @@ -749,6 +781,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): Traceback (most recent call last): ... ValueError: not an element of this algebra + """ msg = "not an element of this algebra" if elt in self.base_ring(): @@ -758,13 +791,16 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # that the integer 3 belongs to the space of 2-by-2 matrices. raise ValueError(msg) - try: - # Try to convert a vector into a column-matrix... + if hasattr(elt, 'superalgebra_element'): + # Handle subalgebra elements + if elt.parent().superalgebra() == self: + return elt.superalgebra_element() + + if hasattr(elt, 'sparse_vector'): + # Convert a vector into a column-matrix. We check for + # "sparse_vector" and not "column" because matrices also + # have a "column" method. elt = elt.column() - except (AttributeError, TypeError): - # and ignore failure, because we weren't really expecting - # a vector as an argument anyway. - pass if elt not in self.matrix_space(): raise ValueError(msg) @@ -781,15 +817,10 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # is that we're already converting everything to long vectors, # and that strategy works for tuples as well. # - # We pass check=False because the matrix basis is "guaranteed" - # to be linearly independent... right? Ha ha. - elt = _all2list(elt) - V = VectorSpace(self.base_ring(), len(elt)) - W = V.span_of_basis( (V(_all2list(s)) for s in self.matrix_basis()), - check=False) + elt = self._matrix_span.ambient_vector_space()(_all2list(elt)) try: - coords = W.coordinate_vector(V(elt)) + coords = self._matrix_span.coordinate_vector(elt) except ArithmeticError: # vector is not in free module raise ValueError(msg) @@ -1395,7 +1426,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # corresponding to trivial spaces (e.g. it returns only the # eigenspace corresponding to lambda=1 if you take the # decomposition relative to the identity element). - trivial = self.subalgebra(()) + trivial = self.subalgebra((), check_axioms=False) J0 = trivial # eigenvalue zero J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half J1 = trivial # eigenvalue one