X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=631d695aa75208a65cb457a4ca11280f44823765;hb=76352ef33974a5ec638b8b1fcab5508f915ea976;hp=d38ba87d37d3e6bdb01e23c7a9631bf98ee2c96c;hpb=5dcc3f73aba8c0b71b601c2d8bd65d9229c2ddb0;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index d38ba87..631d695 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -1,9 +1,53 @@ """ -Euclidean Jordan Algebras. These are formally-real Jordan Algebras; -specifically those where u^2 + v^2 = 0 implies that u = v = 0. They -are used in optimization, and have some additional nice methods beyond -what can be supported in a general Jordan Algebra. - +Representations and constructions for Euclidean Jordan algebras. + +A Euclidean Jordan algebra is a Jordan algebra that has some +additional properties: + + 1. It is finite-dimensional. + 2. Its scalar field is the real numbers. + 3a. An inner product is defined on it, and... + 3b. That inner product is compatible with the Jordan product + in the sense that ` = ` for all elements + `x,y,z` in the algebra. + +Every Euclidean Jordan algebra is formally-real: for any two elements +`x` and `y` in the algebra, `x^{2} + y^{2} = 0` implies that `x = y = +0`. Conversely, every finite-dimensional formally-real Jordan algebra +can be made into a Euclidean Jordan algebra with an appropriate choice +of inner-product. + +Formally-real Jordan algebras were originally studied as a framework +for quantum mechanics. Today, Euclidean Jordan algebras are crucial in +symmetric cone optimization, since every symmetric cone arises as the +cone of squares in some Euclidean Jordan algebra. + +It is known that every Euclidean Jordan algebra decomposes into an +orthogonal direct sum (essentially, a Cartesian product) of simple +algebras, and that moreover, up to Jordan-algebra isomorphism, there +are only five families of simple algebras. We provide constructions +for these simple algebras: + + * :class:`BilinearFormEJA` + * :class:`RealSymmetricEJA` + * :class:`ComplexHermitianEJA` + * :class:`QuaternionHermitianEJA` + +Missing from this list is the algebra of three-by-three octononion +Hermitian matrices, as there is (as of yet) no implementation of the +octonions in SageMath. In addition to these, we provide two other +example constructions, + + * :class:`HadamardEJA` + * :class:`TrivialEJA` + +The Jordan spin algebra is a bilinear form algebra where the bilinear +form is the identity. The Hadamard EJA is simply a Cartesian product +of one-dimensional spin algebras. And last but not least, the trivial +EJA is exactly what you think. Cartesian products of these are also +supported using the usual ``cartesian_product()`` function; as a +result, we support (up to isomorphism) all Euclidean Jordan algebras +that don't involve octonions. SETUP:: @@ -13,7 +57,6 @@ EXAMPLES:: sage: random_eja() Euclidean Jordan algebra of dimension... - """ from itertools import repeat @@ -3210,4 +3253,42 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct, FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA +class RationalBasisCartesianProductEJA(CartesianProductEJA, + RationalBasisEJA): + r""" + A separate class for products of algebras for which we know a + rational basis. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (JordanSpinEJA, + ....: RealSymmetricEJA) + + EXAMPLES: + + This gives us fast characteristic polynomial computations in + product algebras, too:: + + + sage: J1 = JordanSpinEJA(2) + sage: J2 = RealSymmetricEJA(3) + sage: J = cartesian_product([J1,J2]) + sage: J.characteristic_polynomial_of().degree() + 5 + sage: J.rank() + 5 + + """ + def __init__(self, algebras, **kwargs): + CartesianProductEJA.__init__(self, algebras, **kwargs) + + self._rational_algebra = None + if self.vector_space().base_field() is not QQ: + self._rational_algebra = cartesian_product([ + r._rational_algebra for r in algebras + ]) + + +RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA + random_eja = ConcreteEJA.random_instance