X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=515e25f9c97de0ae102e8dc6bd7b29db89e39dd0;hb=f0f0e4c8277496289e86ba97caceea496763870e;hp=3f2127d7df9b811a599ba1da01b7b100ab0a5573;hpb=d875b32c8b9063a501b4387af357bd7a9f21633e;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 3f2127d..515e25f 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -17,11 +17,10 @@ from sage.misc.prandom import choice from sage.misc.table import table from sage.modules.free_module import FreeModule, VectorSpace from sage.rings.integer_ring import ZZ -from sage.rings.number_field.number_field import NumberField, QuadraticField +from sage.rings.number_field.number_field import QuadraticField from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.rational_field import QQ from sage.rings.real_lazy import CLF, RLF -from sage.structure.element import is_Matrix from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement from mjo.eja.eja_utils import _mat2vec @@ -406,8 +405,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): EXAMPLES: - Our inner product satisfies the Jordan axiom, which is also - referred to as "associativity" for a symmetric bilinear form:: + Our inner product is "associative," which means the following for + a symmetric bilinear form:: sage: set_random_seed() sage: J = random_eja() @@ -911,7 +910,7 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): z = R.gen() p = z**2 - 2 if p.is_irreducible(): - field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt()) + field = field.extension(p, 'sqrt2', embedding=RLF(2).sqrt()) basis = tuple( s.change_ring(field) for s in basis ) self._basis_normalizers = tuple( ~(self.natural_inner_product(s,s).sqrt()) for s in basis ) @@ -940,8 +939,9 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): else: basis = ( (b/n) for (b,n) in izip(self.natural_basis(), self._basis_normalizers) ) - field = self.base_ring().base_ring() # yeeeaahhhhhhh - J = MatrixEuclideanJordanAlgebra(field, + + # Do this over the rationals and convert back at the end. + J = MatrixEuclideanJordanAlgebra(QQ, basis, self.rank(), normalize_basis=False) @@ -950,7 +950,14 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): # p might be missing some vars, have to substitute "optionally" pairs = izip(x.base_ring().gens(), self._basis_normalizers) substitutions = { v: v*c for (v,c) in pairs } - return p.subs(substitutions) + result = p.subs(substitutions) + + # The result of "subs" can be either a coefficient-ring + # element or a polynomial. Gotta handle both cases. + if result in QQ: + return self.base_ring()(result) + else: + return result.change_ring(self.base_ring()) @staticmethod @@ -1013,6 +1020,7 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): Xu = cls.real_unembed(X) Yu = cls.real_unembed(Y) tr = (Xu*Yu).trace() + if tr in RLF: # It's real already. return tr @@ -1067,6 +1075,14 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra, KnownRankEJA): sage: e2*e2 e2 + In theory, our "field" can be any subfield of the reals:: + + sage: RealSymmetricEJA(2, AA) + Euclidean Jordan algebra of dimension 3 over Algebraic Real Field + sage: RealSymmetricEJA(2, RR) + Euclidean Jordan algebra of dimension 3 over Real Field with + 53 bits of precision + TESTS: The dimension of this algebra is `(n^2 + n) / 2`:: @@ -1256,10 +1272,12 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra): if not n.mod(2).is_zero(): raise ValueError("the matrix 'M' must be a complex embedding") - field = M.base_ring() # This should already have sqrt2 + # If "M" was normalized, its base ring might have roots + # adjoined and they can stick around after unembedding. + field = M.base_ring() R = PolynomialRing(field, 'z') z = R.gen() - F = NumberField(z**2 + 1,'i', embedding=CLF(-1).sqrt()) + F = field.extension(z**2 + 1, 'i', embedding=CLF(-1).sqrt()) i = F.gen() # Go top-left to bottom-right (reading order), converting every @@ -1398,7 +1416,7 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra, KnownRankEJA): """ R = PolynomialRing(field, 'z') z = R.gen() - F = NumberField(z**2 + 1, 'I', embedding=CLF(-1).sqrt()) + F = field.extension(z**2 + 1, 'I') I = F.gen() # This is like the symmetric case, but we need to be careful: @@ -1533,7 +1551,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra): if M.ncols() != n: raise ValueError("the matrix 'M' must be square") if not n.mod(4).is_zero(): - raise ValueError("the matrix 'M' must be a complex embedding") + raise ValueError("the matrix 'M' must be a quaternion embedding") # Use the base ring of the matrix to ensure that its entries can be # multiplied by elements of the quaternion algebra. @@ -1705,7 +1723,10 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra, S.append(Sij_J) Sij_K = cls.real_embed(K*Eij - K*Eij.transpose()) S.append(Sij_K) - return S + + # Since we embedded these, we can drop back to the "field" that we + # started with instead of the quaternion algebra "Q". + return ( s.change_ring(field) for s in S ) def __init__(self, n, field=QQ, **kwargs):