X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=3361bfaaeb6490f425ac383d0b14904b2e02b76c;hb=b1fed66884abd74c4c2456d56389a64fe5491ab4;hp=4a1c6f94f589c80b9021b71ee01693765aabcaeb;hpb=82d3e5bb067d73eb0aa557d234da0f9723b456e8;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 4a1c6f9..3361bfa 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -170,6 +170,17 @@ from mjo.eja.eja_element import FiniteDimensionalEJAElement from mjo.eja.eja_operator import FiniteDimensionalEJAOperator from mjo.eja.eja_utils import _all2list, _mat2vec +def EuclideanJordanAlgebras(field): + r""" + The category of Euclidean Jordan algebras over ``field``, which + must be a subfield of the real numbers. For now this is just a + convenient wrapper around all of the other category axioms that + apply to all EJAs. + """ + category = MagmaticAlgebras(field).FiniteDimensional() + category = category.WithBasis().Unital().Commutative() + return category + class FiniteDimensionalEJA(CombinatorialFreeModule): r""" A finite-dimensional Euclidean Jordan algebra. @@ -228,6 +239,26 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): """ Element = FiniteDimensionalEJAElement + @staticmethod + def _check_input_field(field): + if not field.is_subring(RR): + # Note: this does return true for the real algebraic + # field, the rationals, and any quadratic field where + # we've specified a real embedding. + raise ValueError("scalar field is not real") + + @staticmethod + def _check_input_axioms(basis, jordan_product, inner_product): + if not all( jordan_product(bi,bj) == jordan_product(bj,bi) + for bi in basis + for bj in basis ): + raise ValueError("Jordan product is not commutative") + + if not all( inner_product(bi,bj) == inner_product(bj,bi) + for bi in basis + for bj in basis ): + raise ValueError("inner-product is not commutative") + def __init__(self, basis, jordan_product, @@ -236,7 +267,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): matrix_space=None, orthonormalize=True, associative=None, - cartesian_product=False, check_field=True, check_axioms=True, prefix="b"): @@ -244,30 +274,14 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): n = len(basis) if check_field: - if not field.is_subring(RR): - # Note: this does return true for the real algebraic - # field, the rationals, and any quadratic field where - # we've specified a real embedding. - raise ValueError("scalar field is not real") + self._check_input_field(field) if check_axioms: # Check commutativity of the Jordan and inner-products. # This has to be done before we build the multiplication # and inner-product tables/matrices, because we take # advantage of symmetry in the process. - if not all( jordan_product(bi,bj) == jordan_product(bj,bi) - for bi in basis - for bj in basis ): - raise ValueError("Jordan product is not commutative") - - if not all( inner_product(bi,bj) == inner_product(bj,bi) - for bi in basis - for bj in basis ): - raise ValueError("inner-product is not commutative") - - - category = MagmaticAlgebras(field).FiniteDimensional() - category = category.WithBasis().Unital().Commutative() + self._check_input_axioms(basis, jordan_product, inner_product) if n <= 1: # All zero- and one-dimensional algebras are just the real @@ -286,14 +300,11 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): for bj in basis for bk in basis) + category = EuclideanJordanAlgebras(field) + if associative: # Element subalgebras can take advantage of this. category = category.Associative() - if cartesian_product: - # Use join() here because otherwise we only get the - # "Cartesian product of..." and not the things themselves. - category = category.join([category, - category.CartesianProducts()]) # Call the superclass constructor so that we can use its from_vector() # method to build our multiplication table. @@ -368,7 +379,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # Now we actually compute the multiplication and inner-product # tables/matrices using the possibly-orthonormalized basis. self._inner_product_matrix = matrix.identity(field, n) - self._multiplication_table = [ [0 for j in range(i+1)] + zed = self.zero() + self._multiplication_table = [ [zed for j in range(i+1)] for i in range(n) ] # Note: the Jordan and inner-products are defined in terms @@ -779,8 +791,10 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): if elt.parent().superalgebra() == self: return elt.superalgebra_element() - if hasattr(elt, 'column'): - # Convert a vector into a column-matrix... + if hasattr(elt, 'sparse_vector'): + # Convert a vector into a column-matrix. We check for + # "sparse_vector" and not "column" because matrices also + # have a "column" method. elt = elt.column() if elt not in self.matrix_space(): @@ -1407,7 +1421,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # corresponding to trivial spaces (e.g. it returns only the # eigenspace corresponding to lambda=1 if you take the # decomposition relative to the identity element). - trivial = self.subalgebra(()) + trivial = self.subalgebra((), check_axioms=False) J0 = trivial # eigenvalue zero J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half J1 = trivial # eigenvalue one @@ -2935,6 +2949,7 @@ class CartesianProductEJA(FiniteDimensionalEJA): sage: from mjo.eja.eja_algebra import (random_eja, ....: CartesianProductEJA, + ....: ComplexHermitianEJA, ....: HadamardEJA, ....: JordanSpinEJA, ....: RealSymmetricEJA) @@ -3046,6 +3061,28 @@ class CartesianProductEJA(FiniteDimensionalEJA): | b2 || 0 | 0 | b2 | +----++----+----+----+ + The "matrix space" of a Cartesian product always consists of + ordered pairs (or triples, or...) whose components are the + matrix spaces of its factors:: + + sage: J1 = HadamardEJA(2) + sage: J2 = ComplexHermitianEJA(2) + sage: J = cartesian_product([J1,J2]) + sage: J.matrix_space() + The Cartesian product of (Full MatrixSpace of 2 by 1 dense + matrices over Algebraic Real Field, Module of 2 by 2 matrices + with entries in Algebraic Field over the scalar ring Algebraic + Real Field) + sage: J.one().to_matrix()[0] + [1] + [1] + sage: J.one().to_matrix()[1] + +---+---+ + | 1 | 0 | + +---+---+ + | 0 | 1 | + +---+---+ + TESTS: All factors must share the same base field:: @@ -3068,11 +3105,7 @@ class CartesianProductEJA(FiniteDimensionalEJA): sage: expected = J.one() # long time sage: actual == expected # long time True - """ - Element = FiniteDimensionalEJAElement - - def __init__(self, factors, **kwargs): m = len(factors) if m == 0: @@ -3084,63 +3117,91 @@ class CartesianProductEJA(FiniteDimensionalEJA): if not all( J.base_ring() == field for J in factors ): raise ValueError("all factors must share the same base field") + # Figure out the category to use. associative = all( f.is_associative() for f in factors ) - - # Compute my matrix space. This category isn't perfect, but - # is good enough for what we need to do. + category = EuclideanJordanAlgebras(field) + if associative: category = category.Associative() + category = category.join([category, category.CartesianProducts()]) + + # Compute my matrix space. We don't simply use the + # ``cartesian_product()`` functor here because it acts + # differently on SageMath MatrixSpaces and our custom + # MatrixAlgebras, which are CombinatorialFreeModules. We + # always want the result to be represented (and indexed) as an + # ordered tuple. This category isn't perfect, but is good + # enough for what we need to do. MS_cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis() MS_cat = MS_cat.Unital().CartesianProducts() MS_factors = tuple( J.matrix_space() for J in factors ) from sage.sets.cartesian_product import CartesianProduct - MS = CartesianProduct(MS_factors, MS_cat) + self._matrix_space = CartesianProduct(MS_factors, MS_cat) - basis = [] - zero = MS.zero() + self._matrix_basis = [] + zero = self._matrix_space.zero() for i in range(m): for b in factors[i].matrix_basis(): z = list(zero) z[i] = b - basis.append(z) + self._matrix_basis.append(z) - basis = tuple( MS(b) for b in basis ) + self._matrix_basis = tuple( self._matrix_space(b) + for b in self._matrix_basis ) + n = len(self._matrix_basis) - # Define jordan/inner products that operate on that matrix_basis. - def jordan_product(x,y): - return MS(tuple( - (factors[i](x[i])*factors[i](y[i])).to_matrix() - for i in range(m) - )) - - def inner_product(x, y): - return sum( - factors[i](x[i]).inner_product(factors[i](y[i])) - for i in range(m) - ) + # We already have what we need for the super-superclass constructor. + CombinatorialFreeModule.__init__(self, + field, + range(n), + prefix="b", + category=category, + bracket=False) - # There's no need to check the field since it already came - # from an EJA. Likewise the axioms are guaranteed to be - # satisfied, unless the guy writing this class sucks. - # - # If you want the basis to be orthonormalized, orthonormalize - # the factors. - FiniteDimensionalEJA.__init__(self, - basis, - jordan_product, - inner_product, - field=field, - matrix_space=MS, - orthonormalize=False, - associative=associative, - cartesian_product=True, - check_field=False, - check_axioms=False) + # Now create the vector space for the algebra, which will have + # its own set of non-ambient coordinates (in terms of the + # supplied basis). + degree = sum( f._matrix_span.ambient_vector_space().degree() + for f in factors ) + V = VectorSpace(field, degree) + vector_basis = tuple( V(_all2list(b)) for b in self._matrix_basis ) + + # Save the span of our matrix basis (when written out as long + # vectors) because otherwise we'll have to reconstruct it + # every time we want to coerce a matrix into the algebra. + self._matrix_span = V.span_of_basis( vector_basis, check=False) # Since we don't (re)orthonormalize the basis, the FDEJA # constructor is going to set self._deortho_matrix to the # identity matrix. Here we set it to the correct value using # the deortho matrices from our factors. - self._deortho_matrix = matrix.block_diagonal( [J._deortho_matrix - for J in factors] ) + self._deortho_matrix = matrix.block_diagonal( + [J._deortho_matrix for J in factors] + ) + + self._inner_product_matrix = matrix.block_diagonal( + [J._inner_product_matrix for J in factors] + ) + + # Building the multiplication table is a bit more tricky + # because we have to embed the entries of the factors' + # multiplication tables into the product EJA. + zed = self.zero() + self._multiplication_table = [ [zed for j in range(i+1)] + for i in range(n) ] + + # Keep track of an offset that tallies the dimensions of all + # previous factors. If the second factor is dim=2 and if the + # first one is dim=3, then we want to skip the first 3x3 block + # when copying the multiplication table for the second factor. + offset = 0 + for f in range(m): + phi_f = self.cartesian_embedding(f) + factor_dim = factors[f].dimension() + for i in range(factor_dim): + for j in range(i+1): + f_ij = factors[f]._multiplication_table[i][j] + e = phi_f(f_ij) + self._multiplication_table[offset+i][offset+j] = e + offset += factor_dim self.rank.set_cache(sum(J.rank() for J in factors)) ones = tuple(J.one().to_matrix() for J in factors) @@ -3162,65 +3223,6 @@ class CartesianProductEJA(FiniteDimensionalEJA): return cartesian_product.symbol.join("%s" % factor for factor in self._sets) - def matrix_space(self): - r""" - Return the space that our matrix basis lives in as a Cartesian - product. - - We don't simply use the ``cartesian_product()`` functor here - because it acts differently on SageMath MatrixSpaces and our - custom MatrixAlgebras, which are CombinatorialFreeModules. We - always want the result to be represented (and indexed) as - an ordered tuple. - - SETUP:: - - sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA, - ....: HadamardEJA, - ....: OctonionHermitianEJA, - ....: RealSymmetricEJA) - - EXAMPLES:: - - sage: J1 = HadamardEJA(1) - sage: J2 = RealSymmetricEJA(2) - sage: J = cartesian_product([J1,J2]) - sage: J.matrix_space() - The Cartesian product of (Full MatrixSpace of 1 by 1 dense - matrices over Algebraic Real Field, Full MatrixSpace of 2 - by 2 dense matrices over Algebraic Real Field) - - :: - - sage: J1 = ComplexHermitianEJA(1) - sage: J2 = ComplexHermitianEJA(1) - sage: J = cartesian_product([J1,J2]) - sage: J.one().to_matrix()[0] - +---+ - | 1 | - +---+ - sage: J.one().to_matrix()[1] - +---+ - | 1 | - +---+ - - :: - - sage: J1 = OctonionHermitianEJA(1) - sage: J2 = OctonionHermitianEJA(1) - sage: J = cartesian_product([J1,J2]) - sage: J.one().to_matrix()[0] - +----+ - | e0 | - +----+ - sage: J.one().to_matrix()[1] - +----+ - | e0 | - +----+ - - """ - return super().matrix_space() - @cached_method def cartesian_projection(self, i):