X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=1fc3618005eb0ac8be12e0e3e09849ab6f983819;hb=ad25c5b8995a1cacefbf4d677316b9e7069521ff;hp=26fe1929be872b393fe41926eeda801dbd0a9436;hpb=3e46389a46db107db3fe36ace6fe5f2c2b52f815;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 26fe192..1fc3618 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -1007,81 +1007,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): Element = FiniteDimensionalEuclideanJordanAlgebraElement -class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra): - """ - Return the Euclidean Jordan Algebra corresponding to the set - `R^n` under the Hadamard product. - - Note: this is nothing more than the Cartesian product of ``n`` - copies of the spin algebra. Once Cartesian product algebras - are implemented, this can go. - - SETUP:: - - sage: from mjo.eja.eja_algebra import HadamardEJA - - EXAMPLES: - - This multiplication table can be verified by hand:: - - sage: J = HadamardEJA(3) - sage: e0,e1,e2 = J.gens() - sage: e0*e0 - e0 - sage: e0*e1 - 0 - sage: e0*e2 - 0 - sage: e1*e1 - e1 - sage: e1*e2 - 0 - sage: e2*e2 - e2 - - TESTS: - - We can change the generator prefix:: - - sage: HadamardEJA(3, prefix='r').gens() - (r0, r1, r2) - - """ - def __init__(self, n, field=AA, **kwargs): - V = VectorSpace(field, n) - mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ] - for i in range(n) ] - - super(HadamardEJA, self).__init__(field, - mult_table, - check_axioms=False, - **kwargs) - self.rank.set_cache(n) - - def inner_product(self, x, y): - """ - Faster to reimplement than to use natural representations. - - SETUP:: - - sage: from mjo.eja.eja_algebra import HadamardEJA - - TESTS: - - Ensure that this is the usual inner product for the algebras - over `R^n`:: - - sage: set_random_seed() - sage: J = HadamardEJA.random_instance() - sage: x,y = J.random_elements(2) - sage: X = x.natural_representation() - sage: Y = y.natural_representation() - sage: x.inner_product(y) == J.natural_inner_product(X,Y) - True - - """ - return x.to_vector().inner_product(y.to_vector()) - def random_eja(field=AA): """ @@ -1108,6 +1033,44 @@ def random_eja(field=AA): +class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): + r""" + Algebras whose basis consists of vectors with rational + entries. Equivalently, algebras whose multiplication tables + contain only rational coefficients. + + When an EJA has a basis that can be made rational, we can speed up + the computation of its characteristic polynomial by doing it over + ``QQ``. All of the named EJA constructors that we provide fall + into this category. + """ + @cached_method + def _charpoly_coefficients(self): + r""" + Override the parent method with something that tries to compute + over a faster (non-extension) field. + """ + if self.base_ring() is QQ: + # There's no need to construct *another* algebra over the + # rationals if this one is already over the rationals. + superclass = super(RationalBasisEuclideanJordanAlgebra, self) + return superclass._charpoly_coefficients() + + mult_table = tuple( + map(lambda x: x.to_vector(), ls) + for ls in self._multiplication_table + ) + + # Do the computation over the rationals. The answer will be + # the same, because our basis coordinates are (essentially) + # rational. + J = FiniteDimensionalEuclideanJordanAlgebra(QQ, + mult_table, + check_field=False, + check_axioms=False) + return J._charpoly_coefficients() + + class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): @staticmethod def _max_test_case_size(): @@ -2021,7 +1984,83 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra): self.rank.set_cache(n) -class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra): +class HadamardEJA(RationalBasisEuclideanJordanAlgebra): + """ + Return the Euclidean Jordan Algebra corresponding to the set + `R^n` under the Hadamard product. + + Note: this is nothing more than the Cartesian product of ``n`` + copies of the spin algebra. Once Cartesian product algebras + are implemented, this can go. + + SETUP:: + + sage: from mjo.eja.eja_algebra import HadamardEJA + + EXAMPLES: + + This multiplication table can be verified by hand:: + + sage: J = HadamardEJA(3) + sage: e0,e1,e2 = J.gens() + sage: e0*e0 + e0 + sage: e0*e1 + 0 + sage: e0*e2 + 0 + sage: e1*e1 + e1 + sage: e1*e2 + 0 + sage: e2*e2 + e2 + + TESTS: + + We can change the generator prefix:: + + sage: HadamardEJA(3, prefix='r').gens() + (r0, r1, r2) + + """ + def __init__(self, n, field=AA, **kwargs): + V = VectorSpace(field, n) + mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ] + for i in range(n) ] + + super(HadamardEJA, self).__init__(field, + mult_table, + check_axioms=False, + **kwargs) + self.rank.set_cache(n) + + def inner_product(self, x, y): + """ + Faster to reimplement than to use natural representations. + + SETUP:: + + sage: from mjo.eja.eja_algebra import HadamardEJA + + TESTS: + + Ensure that this is the usual inner product for the algebras + over `R^n`:: + + sage: set_random_seed() + sage: J = HadamardEJA.random_instance() + sage: x,y = J.random_elements(2) + sage: X = x.natural_representation() + sage: Y = y.natural_representation() + sage: x.inner_product(y) == J.natural_inner_product(X,Y) + True + + """ + return x.to_vector().inner_product(y.to_vector()) + + +class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra): r""" The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)`` with the half-trace inner product and jordan product ``x*y =