X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=166ed1e322dfa6c966f79231c03d5837cdc3b165;hb=99ca9f8c24194ad6be7b8e325575e58b53429c2b;hp=12207b7c5a8e897738ab21a73361883cae03626f;hpb=5d646c586de50b571d2983b546a05899bf0c20c2;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 12207b7..166ed1e 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -5,7 +5,7 @@ are used in optimization, and have some additional nice methods beyond what can be supported in a general Jordan Algebra. """ -from itertools import izip, repeat +from itertools import repeat from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra from sage.categories.magmatic_algebras import MagmaticAlgebras @@ -13,6 +13,7 @@ from sage.combinat.free_module import CombinatorialFreeModule from sage.matrix.constructor import matrix from sage.matrix.matrix_space import MatrixSpace from sage.misc.cachefunc import cached_method +from sage.misc.lazy_import import lazy_import from sage.misc.prandom import choice from sage.misc.table import table from sage.modules.free_module import FreeModule, VectorSpace @@ -20,6 +21,8 @@ from sage.rings.all import (ZZ, QQ, RR, RLF, CLF, PolynomialRing, QuadraticField) from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement +lazy_import('mjo.eja.eja_subalgebra', + 'FiniteDimensionalEuclideanJordanSubalgebra') from mjo.eja.eja_utils import _mat2vec class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): @@ -91,8 +94,10 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): # long run to have the multiplication table be in terms of # algebra elements. We do this after calling the superclass # constructor so that from_vector() knows what to do. - self._multiplication_table = [ map(lambda x: self.from_vector(x), ls) - for ls in mult_table ] + self._multiplication_table = [ + list(map(lambda x: self.from_vector(x), ls)) + for ls in mult_table + ] def _element_constructor_(self, elt): @@ -106,7 +111,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): SETUP:: sage: from mjo.eja.eja_algebra import (JordanSpinEJA, - ....: RealCartesianProductEJA, + ....: HadamardEJA, ....: RealSymmetricEJA) EXAMPLES: @@ -134,7 +139,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): vector representations) back and forth faithfully:: sage: set_random_seed() - sage: J = RealCartesianProductEJA.random_instance() + sage: J = HadamardEJA.random_instance() sage: x = J.random_element() sage: J(x.to_vector().column()) == x True @@ -404,7 +409,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): S = PolynomialRing(S, R.variable_names()) t = S(t) - return sum( a[k]*(t**k) for k in xrange(len(a)) ) + return sum( a[k]*(t**k) for k in range(len(a)) ) def inner_product(self, x, y): @@ -490,7 +495,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): """ M = list(self._multiplication_table) # copy - for i in xrange(len(M)): + for i in range(len(M)): # M had better be "square" M[i] = [self.monomial(i)] + M[i] M = [["*"] + list(self.gens())] + M @@ -577,12 +582,12 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): SETUP:: - sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA, + sage: from mjo.eja.eja_algebra import (HadamardEJA, ....: random_eja) EXAMPLES:: - sage: J = RealCartesianProductEJA(5) + sage: J = HadamardEJA(5) sage: J.one() e0 + e1 + e2 + e3 + e4 @@ -631,6 +636,119 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): return self.linear_combination(zip(self.gens(), coeffs)) + def peirce_decomposition(self, c): + """ + The Peirce decomposition of this algebra relative to the + idempotent ``c``. + + In the future, this can be extended to a complete system of + orthogonal idempotents. + + INPUT: + + - ``c`` -- an idempotent of this algebra. + + OUTPUT: + + A triple (J0, J5, J1) containing two subalgebras and one subspace + of this algebra, + + - ``J0`` -- the algebra on the eigenspace of ``c.operator()`` + corresponding to the eigenvalue zero. + + - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()`` + corresponding to the eigenvalue one-half. + + - ``J1`` -- the algebra on the eigenspace of ``c.operator()`` + corresponding to the eigenvalue one. + + These are the only possible eigenspaces for that operator, and this + algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are + orthogonal, and are subalgebras of this algebra with the appropriate + restrictions. + + SETUP:: + + sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA + + EXAMPLES: + + The canonical example comes from the symmetric matrices, which + decompose into diagonal and off-diagonal parts:: + + sage: J = RealSymmetricEJA(3) + sage: C = matrix(QQ, [ [1,0,0], + ....: [0,1,0], + ....: [0,0,0] ]) + sage: c = J(C) + sage: J0,J5,J1 = J.peirce_decomposition(c) + sage: J0 + Euclidean Jordan algebra of dimension 1... + sage: J5 + Vector space of degree 6 and dimension 2... + sage: J1 + Euclidean Jordan algebra of dimension 3... + + TESTS: + + Every algebra decomposes trivially with respect to its identity + element:: + + sage: set_random_seed() + sage: J = random_eja() + sage: J0,J5,J1 = J.peirce_decomposition(J.one()) + sage: J0.dimension() == 0 and J5.dimension() == 0 + True + sage: J1.superalgebra() == J and J1.dimension() == J.dimension() + True + + The identity elements in the two subalgebras are the + projections onto their respective subspaces of the + superalgebra's identity element:: + + sage: set_random_seed() + sage: J = random_eja() + sage: x = J.random_element() + sage: if not J.is_trivial(): + ....: while x.is_nilpotent(): + ....: x = J.random_element() + sage: c = x.subalgebra_idempotent() + sage: J0,J5,J1 = J.peirce_decomposition(c) + sage: J1(c) == J1.one() + True + sage: J0(J.one() - c) == J0.one() + True + + """ + if not c.is_idempotent(): + raise ValueError("element is not idempotent: %s" % c) + + # Default these to what they should be if they turn out to be + # trivial, because eigenspaces_left() won't return eigenvalues + # corresponding to trivial spaces (e.g. it returns only the + # eigenspace corresponding to lambda=1 if you take the + # decomposition relative to the identity element). + trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ()) + J0 = trivial # eigenvalue zero + J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half + J1 = trivial # eigenvalue one + + for (eigval, eigspace) in c.operator().matrix().left_eigenspaces(): + if eigval == ~(self.base_ring()(2)): + J5 = eigspace + else: + gens = tuple( self.from_vector(b) for b in eigspace.basis() ) + subalg = FiniteDimensionalEuclideanJordanSubalgebra(self, gens) + if eigval == 0: + J0 = subalg + elif eigval == 1: + J1 = subalg + else: + raise ValueError("unexpected eigenvalue: %s" % eigval) + + return (J0, J5, J1) + + def random_elements(self, count): """ Return ``count`` random elements as a tuple. @@ -649,7 +767,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): True """ - return tuple( self.random_element() for idx in xrange(count) ) + return tuple( self.random_element() for idx in range(count) ) def rank(self): @@ -785,8 +903,7 @@ class KnownRankEJA(object): return cls(n, field, **kwargs) -class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra, - KnownRankEJA): +class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA): """ Return the Euclidean Jordan Algebra corresponding to the set `R^n` under the Hadamard product. @@ -797,13 +914,13 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra, SETUP:: - sage: from mjo.eja.eja_algebra import RealCartesianProductEJA + sage: from mjo.eja.eja_algebra import HadamardEJA EXAMPLES: This multiplication table can be verified by hand:: - sage: J = RealCartesianProductEJA(3) + sage: J = HadamardEJA(3) sage: e0,e1,e2 = J.gens() sage: e0*e0 e0 @@ -822,16 +939,16 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra, We can change the generator prefix:: - sage: RealCartesianProductEJA(3, prefix='r').gens() + sage: HadamardEJA(3, prefix='r').gens() (r0, r1, r2) """ def __init__(self, n, field=QQ, **kwargs): V = VectorSpace(field, n) - mult_table = [ [ V.gen(i)*(i == j) for j in xrange(n) ] - for i in xrange(n) ] + mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ] + for i in range(n) ] - fdeja = super(RealCartesianProductEJA, self) + fdeja = super(HadamardEJA, self) return fdeja.__init__(field, mult_table, rank=n, **kwargs) def inner_product(self, x, y): @@ -840,7 +957,7 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra, SETUP:: - sage: from mjo.eja.eja_algebra import RealCartesianProductEJA + sage: from mjo.eja.eja_algebra import HadamardEJA TESTS: @@ -848,7 +965,7 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra, over `R^n`:: sage: set_random_seed() - sage: J = RealCartesianProductEJA.random_instance() + sage: J = HadamardEJA.random_instance() sage: x,y = J.random_elements(2) sage: X = x.natural_representation() sage: Y = y.natural_representation() @@ -916,7 +1033,7 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): basis = tuple( s.change_ring(field) for s in basis ) self._basis_normalizers = tuple( ~(self.natural_inner_product(s,s).sqrt()) for s in basis ) - basis = tuple(s*c for (s,c) in izip(basis,self._basis_normalizers)) + basis = tuple(s*c for (s,c) in zip(basis,self._basis_normalizers)) Qs = self.multiplication_table_from_matrix_basis(basis) @@ -939,8 +1056,8 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): # with had entries in a nice field. return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coeff(i) else: - basis = ( (b/n) for (b,n) in izip(self.natural_basis(), - self._basis_normalizers) ) + basis = ( (b/n) for (b,n) in zip(self.natural_basis(), + self._basis_normalizers) ) # Do this over the rationals and convert back at the end. J = MatrixEuclideanJordanAlgebra(QQ, @@ -950,7 +1067,7 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): (_,x,_,_) = J._charpoly_matrix_system() p = J._charpoly_coeff(i) # p might be missing some vars, have to substitute "optionally" - pairs = izip(x.base_ring().gens(), self._basis_normalizers) + pairs = zip(x.base_ring().gens(), self._basis_normalizers) substitutions = { v: v*c for (v,c) in pairs } result = p.subs(substitutions) @@ -983,9 +1100,9 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): V = VectorSpace(field, dimension**2) W = V.span_of_basis( _mat2vec(s) for s in basis ) n = len(basis) - mult_table = [[W.zero() for j in xrange(n)] for i in xrange(n)] - for i in xrange(n): - for j in xrange(n): + mult_table = [[W.zero() for j in range(n)] for i in range(n)] + for i in range(n): + for j in range(n): mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry)) @@ -1156,8 +1273,8 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra, KnownRankEJA): # The basis of symmetric matrices, as matrices, in their R^(n-by-n) # coordinates. S = [] - for i in xrange(n): - for j in xrange(i+1): + for i in range(n): + for j in range(i+1): Eij = matrix(field, n, lambda k,l: k==i and l==j) if i == j: Sij = Eij @@ -1287,8 +1404,8 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra): # Go top-left to bottom-right (reading order), converting every # 2-by-2 block we see to a single complex element. elements = [] - for k in xrange(n/2): - for j in xrange(n/2): + for k in range(n/2): + for j in range(n/2): submat = M[2*k:2*k+2,2*j:2*j+2] if submat[0,0] != submat[1,1]: raise ValueError('bad on-diagonal submatrix') @@ -1439,8 +1556,8 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra, KnownRankEJA): # * The diagonal will (as a result) be real. # S = [] - for i in xrange(n): - for j in xrange(i+1): + for i in range(n): + for j in range(i+1): Eij = matrix(F, n, lambda k,l: k==i and l==j) if i == j: Sij = cls.real_embed(Eij) @@ -1577,8 +1694,8 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra): # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1 # quaternion block. elements = [] - for l in xrange(n/4): - for m in xrange(n/4): + for l in range(n/4): + for m in range(n/4): submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed( M[4*l:4*l+4,4*m:4*m+4] ) if submat[0,0] != submat[1,1].conjugate(): @@ -1730,8 +1847,8 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra, # * The diagonal will (as a result) be real. # S = [] - for i in xrange(n): - for j in xrange(i+1): + for i in range(n): + for j in range(i+1): Eij = matrix(Q, n, lambda k,l: k==i and l==j) if i == j: Sij = cls.real_embed(Eij) @@ -1798,9 +1915,9 @@ class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA): """ def __init__(self, n, field=QQ, **kwargs): V = VectorSpace(field, n) - mult_table = [[V.zero() for j in xrange(n)] for i in xrange(n)] - for i in xrange(n): - for j in xrange(n): + mult_table = [[V.zero() for j in range(n)] for i in range(n)] + for i in range(n): + for j in range(n): x = V.gen(i) y = V.gen(j) x0 = x[0]