X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=106a0cddec06355a952e71d75699677b25dd7da9;hb=fc29add6cf1d9ff4e8a240b0f8f2ca6672d4ea57;hp=5910221ef8f8807dce7fee30eeb2da9045114399;hpb=3f1bc1ad064d41c956b9034edb950e6dbd8eb585;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 5910221..106a0cd 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -1,9 +1,56 @@ """ -Euclidean Jordan Algebras. These are formally-real Jordan Algebras; -specifically those where u^2 + v^2 = 0 implies that u = v = 0. They -are used in optimization, and have some additional nice methods beyond -what can be supported in a general Jordan Algebra. - +Representations and constructions for Euclidean Jordan algebras. + +A Euclidean Jordan algebra is a Jordan algebra that has some +additional properties: + + 1. It is finite-dimensional. + 2. Its scalar field is the real numbers. + 3a. An inner product is defined on it, and... + 3b. That inner product is compatible with the Jordan product + in the sense that ` = ` for all elements + `x,y,z` in the algebra. + +Every Euclidean Jordan algebra is formally-real: for any two elements +`x` and `y` in the algebra, `x^{2} + y^{2} = 0` implies that `x = y = +0`. Conversely, every finite-dimensional formally-real Jordan algebra +can be made into a Euclidean Jordan algebra with an appropriate choice +of inner-product. + +Formally-real Jordan algebras were originally studied as a framework +for quantum mechanics. Today, Euclidean Jordan algebras are crucial in +symmetric cone optimization, since every symmetric cone arises as the +cone of squares in some Euclidean Jordan algebra. + +It is known that every Euclidean Jordan algebra decomposes into an +orthogonal direct sum (essentially, a Cartesian product) of simple +algebras, and that moreover, up to Jordan-algebra isomorphism, there +are only five families of simple algebras. We provide constructions +for these simple algebras: + + * :class:`BilinearFormEJA` + * :class:`RealSymmetricEJA` + * :class:`ComplexHermitianEJA` + * :class:`QuaternionHermitianEJA` + * :class:`OctonionHermitianEJA` + +In addition to these, we provide two other example constructions, + + * :class:`JordanSpinEJA` + * :class:`HadamardEJA` + * :class:`AlbertEJA` + * :class:`TrivialEJA` + +The Jordan spin algebra is a bilinear form algebra where the bilinear +form is the identity. The Hadamard EJA is simply a Cartesian product +of one-dimensional spin algebras. The Albert EJA is simply a special +case of the :class:`OctonionHermitianEJA` where the matrices are +three-by-three and the resulting space has dimension 27. And +last/least, the trivial EJA is exactly what you think it is; it could +also be obtained by constructing a dimension-zero instance of any of +the other algebras. Cartesian products of these are also supported +using the usual ``cartesian_product()`` function; as a result, we +support (up to isomorphism) all Euclidean Jordan algebras. SETUP:: @@ -13,13 +60,11 @@ EXAMPLES:: sage: random_eja() Euclidean Jordan algebra of dimension... - """ -from itertools import repeat - from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra from sage.categories.magmatic_algebras import MagmaticAlgebras +from sage.categories.sets_cat import cartesian_product from sage.combinat.free_module import CombinatorialFreeModule from sage.matrix.constructor import matrix from sage.matrix.matrix_space import MatrixSpace @@ -31,7 +76,7 @@ from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF, QuadraticField) from mjo.eja.eja_element import FiniteDimensionalEJAElement from mjo.eja.eja_operator import FiniteDimensionalEJAOperator -from mjo.eja.eja_utils import _mat2vec +from mjo.eja.eja_utils import _all2list, _mat2vec class FiniteDimensionalEJA(CombinatorialFreeModule): r""" @@ -39,16 +84,50 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): INPUT: - - basis -- a tuple of basis elements in their matrix form. + - ``basis`` -- a tuple; a tuple of basis elements in "matrix + form," which must be the same form as the arguments to + ``jordan_product`` and ``inner_product``. In reality, "matrix + form" can be either vectors, matrices, or a Cartesian product + (ordered tuple) of vectors or matrices. All of these would + ideally be vector spaces in sage with no special-casing + needed; but in reality we turn vectors into column-matrices + and Cartesian products `(a,b)` into column matrices + `(a,b)^{T}` after converting `a` and `b` themselves. + + - ``jordan_product`` -- a function; afunction of two ``basis`` + elements (in matrix form) that returns their jordan product, + also in matrix form; this will be applied to ``basis`` to + compute a multiplication table for the algebra. + + - ``inner_product`` -- a function; a function of two ``basis`` + elements (in matrix form) that returns their inner + product. This will be applied to ``basis`` to compute an + inner-product table (basically a matrix) for this algebra. + + - ``field`` -- a subfield of the reals (default: ``AA``); the scalar + field for the algebra. + + - ``orthonormalize`` -- boolean (default: ``True``); whether or + not to orthonormalize the basis. Doing so is expensive and + generally rules out using the rationals as your ``field``, but + is required for spectral decompositions. + + SETUP:: + + sage: from mjo.eja.eja_algebra import random_eja + + TESTS: - - jordan_product -- function of two elements (in matrix form) - that returns their jordan product in this algebra; this will - be applied to ``basis`` to compute a multiplication table for - the algebra. + We should compute that an element subalgebra is associative even + if we circumvent the element method:: - - inner_product -- function of two elements (in matrix form) that - returns their inner product. This will be applied to ``basis`` to - compute an inner-product table (basically a matrix) for this algebra. + sage: set_random_seed() + sage: J = random_eja(field=QQ,orthonormalize=False) + sage: x = J.random_element() + sage: A = x.subalgebra_generated_by(orthonormalize=False) + sage: basis = tuple(b.superalgebra_element() for b in A.basis()) + sage: J.subalgebra(basis, orthonormalize=False).is_associative() + True """ Element = FiniteDimensionalEJAElement @@ -59,10 +138,13 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): inner_product, field=AA, orthonormalize=True, - associative=False, + associative=None, + cartesian_product=False, check_field=True, check_axioms=True, - prefix='e'): + prefix="b"): + + n = len(basis) if check_field: if not field.is_subring(RR): @@ -71,10 +153,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # we've specified a real embedding. raise ValueError("scalar field is not real") - # If the basis given to us wasn't over the field that it's - # supposed to be over, fix that. Or, you know, crash. - basis = tuple( b.change_ring(field) for b in basis ) - if check_axioms: # Check commutativity of the Jordan and inner-products. # This has to be done before we build the multiplication @@ -92,31 +170,53 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): category = MagmaticAlgebras(field).FiniteDimensional() - category = category.WithBasis().Unital() + category = category.WithBasis().Unital().Commutative() + + if n <= 1: + # All zero- and one-dimensional algebras are just the real + # numbers with (some positive multiples of) the usual + # multiplication as its Jordan and inner-product. + associative = True + if associative is None: + # We should figure it out. As with check_axioms, we have to do + # this without the help of the _jordan_product_is_associative() + # method because we need to know the category before we + # initialize the algebra. + associative = all( jordan_product(jordan_product(bi,bj),bk) + == + jordan_product(bi,jordan_product(bj,bk)) + for bi in basis + for bj in basis + for bk in basis) + if associative: # Element subalgebras can take advantage of this. category = category.Associative() + if cartesian_product: + # Use join() here because otherwise we only get the + # "Cartesian product of..." and not the things themselves. + category = category.join([category, + category.CartesianProducts()]) # Call the superclass constructor so that we can use its from_vector() # method to build our multiplication table. - n = len(basis) - super().__init__(field, - range(n), - prefix=prefix, - category=category, - bracket=False) + CombinatorialFreeModule.__init__(self, + field, + range(n), + prefix=prefix, + category=category, + bracket=False) # Now comes all of the hard work. We'll be constructing an # ambient vector space V that our (vectorized) basis lives in, # as well as a subspace W of V spanned by those (vectorized) # basis elements. The W-coordinates are the coefficients that - # we see in things like x = 1*e1 + 2*e2. + # we see in things like x = 1*b1 + 2*b2. vector_basis = basis degree = 0 if n > 0: - # Works on both column and square matrices... - degree = len(basis[0].list()) + degree = len(_all2list(basis[0])) # Build an ambient space that fits our matrix basis when # written out as "long vectors." @@ -130,7 +230,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # Save a copy of the un-orthonormalized basis for later. # Convert it to ambient V (vector) coordinates while we're # at it, because we'd have to do it later anyway. - deortho_vector_basis = tuple( V(b.list()) for b in basis ) + deortho_vector_basis = tuple( V(_all2list(b)) for b in basis ) from mjo.eja.eja_utils import gram_schmidt basis = tuple(gram_schmidt(basis, inner_product)) @@ -142,7 +242,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # Now create the vector space for the algebra, which will have # its own set of non-ambient coordinates (in terms of the # supplied basis). - vector_basis = tuple( V(b.list()) for b in basis ) + vector_basis = tuple( V(_all2list(b)) for b in basis ) W = V.span_of_basis( vector_basis, check=check_axioms) if orthonormalize: @@ -174,7 +274,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # The jordan product returns a matrixy answer, so we # have to convert it to the algebra coordinates. elt = jordan_product(q_i, q_j) - elt = W.coordinate_vector(V(elt.list())) + elt = W.coordinate_vector(V(_all2list(elt))) self._multiplication_table[i][j] = self.from_vector(elt) if not orthonormalize: @@ -222,6 +322,35 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): def product_on_basis(self, i, j): + r""" + Returns the Jordan product of the `i` and `j`th basis elements. + + This completely defines the Jordan product on the algebra, and + is used direclty by our superclass machinery to implement + :meth:`product`. + + SETUP:: + + sage: from mjo.eja.eja_algebra import random_eja + + TESTS:: + + sage: set_random_seed() + sage: J = random_eja() + sage: n = J.dimension() + sage: bi = J.zero() + sage: bj = J.zero() + sage: bi_bj = J.zero()*J.zero() + sage: if n > 0: + ....: i = ZZ.random_element(n) + ....: j = ZZ.random_element(n) + ....: bi = J.monomial(i) + ....: bj = J.monomial(j) + ....: bi_bj = J.product_on_basis(i,j) + sage: bi*bj == bi_bj + True + + """ # We only stored the lower-triangular portion of the # multiplication table. if j <= i: @@ -279,11 +408,33 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: y = J.random_element() sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2) True + """ B = self._inner_product_matrix return (B*x.to_vector()).inner_product(y.to_vector()) + def is_associative(self): + r""" + Return whether or not this algebra's Jordan product is associative. + + SETUP:: + + sage: from mjo.eja.eja_algebra import ComplexHermitianEJA + + EXAMPLES:: + + sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False) + sage: J.is_associative() + False + sage: x = sum(J.gens()) + sage: A = x.subalgebra_generated_by(orthonormalize=False) + sage: A.is_associative() + True + + """ + return "Associative" in self.category().axioms() + def _is_commutative(self): r""" Whether or not this algebra's multiplication table is commutative. @@ -292,9 +443,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): this algebra was constructed with ``check_axioms=False`` and passed an invalid multiplication table. """ - return all( self.product_on_basis(i,j) == self.product_on_basis(i,j) - for i in range(self.dimension()) - for j in range(self.dimension()) ) + return all( x*y == y*x for x in self.gens() for y in self.gens() ) def _is_jordanian(self): r""" @@ -313,6 +462,92 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): for i in range(self.dimension()) for j in range(self.dimension()) ) + def _jordan_product_is_associative(self): + r""" + Return whether or not this algebra's Jordan product is + associative; that is, whether or not `x*(y*z) = (x*y)*z` + for all `x,y,x`. + + This method should agree with :meth:`is_associative` unless + you lied about the value of the ``associative`` parameter + when you constructed the algebra. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (random_eja, + ....: RealSymmetricEJA, + ....: ComplexHermitianEJA, + ....: QuaternionHermitianEJA) + + EXAMPLES:: + + sage: J = RealSymmetricEJA(4, orthonormalize=False) + sage: J._jordan_product_is_associative() + False + sage: x = sum(J.gens()) + sage: A = x.subalgebra_generated_by() + sage: A._jordan_product_is_associative() + True + + :: + + sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False) + sage: J._jordan_product_is_associative() + False + sage: x = sum(J.gens()) + sage: A = x.subalgebra_generated_by(orthonormalize=False) + sage: A._jordan_product_is_associative() + True + + :: + + sage: J = QuaternionHermitianEJA(2) + sage: J._jordan_product_is_associative() + False + sage: x = sum(J.gens()) + sage: A = x.subalgebra_generated_by() + sage: A._jordan_product_is_associative() + True + + TESTS: + + The values we've presupplied to the constructors agree with + the computation:: + + sage: set_random_seed() + sage: J = random_eja() + sage: J.is_associative() == J._jordan_product_is_associative() + True + + """ + R = self.base_ring() + + # Used to check whether or not something is zero. + epsilon = R.zero() + if not R.is_exact(): + # I don't know of any examples that make this magnitude + # necessary because I don't know how to make an + # associative algebra when the element subalgebra + # construction is unreliable (as it is over RDF; we can't + # find the degree of an element because we can't compute + # the rank of a matrix). But even multiplication of floats + # is non-associative, so *some* epsilon is needed... let's + # just take the one from _inner_product_is_associative? + epsilon = 1e-15 + + for i in range(self.dimension()): + for j in range(self.dimension()): + for k in range(self.dimension()): + x = self.monomial(i) + y = self.monomial(j) + z = self.monomial(k) + diff = (x*y)*z - x*(y*z) + + if diff.norm() > epsilon: + return False + + return True + def _inner_product_is_associative(self): r""" Return whether or not this algebra's inner product `B` is @@ -322,11 +557,14 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): this algebra was constructed with ``check_axioms=False`` and passed an invalid Jordan or inner-product. """ + R = self.base_ring() - # Used to check whether or not something is zero in an inexact - # ring. This number is sufficient to allow the construction of - # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True. - epsilon = 1e-16 + # Used to check whether or not something is zero. + epsilon = R.zero() + if not R.is_exact(): + # This choice is sufficient to allow the construction of + # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True. + epsilon = 1e-15 for i in range(self.dimension()): for j in range(self.dimension()): @@ -336,12 +574,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): z = self.monomial(k) diff = (x*y).inner_product(z) - x.inner_product(y*z) - if self.base_ring().is_exact(): - if diff != 0: - return False - else: - if diff.abs() > epsilon: - return False + if diff.abs() > epsilon: + return False return True @@ -355,7 +589,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): SETUP:: - sage: from mjo.eja.eja_algebra import (JordanSpinEJA, + sage: from mjo.eja.eja_algebra import (random_eja, + ....: JordanSpinEJA, ....: HadamardEJA, ....: RealSymmetricEJA) @@ -377,29 +612,42 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): ... ValueError: not an element of this algebra + Tuples work as well, provided that the matrix basis for the + algebra consists of them:: + + sage: J1 = HadamardEJA(3) + sage: J2 = RealSymmetricEJA(2) + sage: J = cartesian_product([J1,J2]) + sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) ) + b1 + b5 + TESTS: - Ensure that we can convert any element of the two non-matrix - simple algebras (whose matrix representations are columns) - back and forth faithfully:: + Ensure that we can convert any element back and forth + faithfully between its matrix and algebra representations:: sage: set_random_seed() - sage: J = HadamardEJA.random_instance() - sage: x = J.random_element() - sage: J(x.to_vector().column()) == x - True - sage: J = JordanSpinEJA.random_instance() + sage: J = random_eja() sage: x = J.random_element() - sage: J(x.to_vector().column()) == x + sage: J(x.to_matrix()) == x True + We cannot coerce elements between algebras just because their + matrix representations are compatible:: + + sage: J1 = HadamardEJA(3) + sage: J2 = JordanSpinEJA(3) + sage: J2(J1.one()) + Traceback (most recent call last): + ... + ValueError: not an element of this algebra + sage: J1(J2.zero()) + Traceback (most recent call last): + ... + ValueError: not an element of this algebra """ msg = "not an element of this algebra" - if elt == 0: - # The superclass implementation of random_element() - # needs to be able to coerce "0" into the algebra. - return self.zero() - elif elt in self.base_ring(): + if elt in self.base_ring(): # Ensure that no base ring -> algebra coercion is performed # by this method. There's some stupidity in sage that would # otherwise propagate to this method; for example, sage thinks @@ -407,9 +655,11 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): raise ValueError(msg) try: + # Try to convert a vector into a column-matrix... elt = elt.column() except (AttributeError, TypeError): - # Try to convert a vector into a column-matrix + # and ignore failure, because we weren't really expecting + # a vector as an argument anyway. pass if elt not in self.matrix_space(): @@ -422,14 +672,20 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # closure whereas the base ring of the 3-by-3 identity matrix # could be QQ instead of QQbar. # + # And, we also have to handle Cartesian product bases (when + # the matrix basis consists of tuples) here. The "good news" + # is that we're already converting everything to long vectors, + # and that strategy works for tuples as well. + # # We pass check=False because the matrix basis is "guaranteed" # to be linearly independent... right? Ha ha. - V = VectorSpace(self.base_ring(), elt.nrows()*elt.ncols()) - W = V.span_of_basis( (_mat2vec(s) for s in self.matrix_basis()), + elt = _all2list(elt) + V = VectorSpace(self.base_ring(), len(elt)) + W = V.span_of_basis( (V(_all2list(s)) for s in self.matrix_basis()), check=False) try: - coords = W.coordinate_vector(_mat2vec(elt)) + coords = W.coordinate_vector(V(elt)) except ArithmeticError: # vector is not in free module raise ValueError(msg) @@ -638,15 +894,15 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: J = JordanSpinEJA(4) sage: J.multiplication_table() +----++----+----+----+----+ - | * || e0 | e1 | e2 | e3 | + | * || b0 | b1 | b2 | b3 | +====++====+====+====+====+ - | e0 || e0 | e1 | e2 | e3 | + | b0 || b0 | b1 | b2 | b3 | +----++----+----+----+----+ - | e1 || e1 | e0 | 0 | 0 | + | b1 || b1 | b0 | 0 | 0 | +----++----+----+----+----+ - | e2 || e2 | 0 | e0 | 0 | + | b2 || b2 | 0 | b0 | 0 | +----++----+----+----+----+ - | e3 || e3 | 0 | 0 | e0 | + | b3 || b3 | 0 | 0 | b0 | +----++----+----+----+----+ """ @@ -656,8 +912,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # And to each subsequent row, prepend an entry that belongs to # the left-side "header column." - M += [ [self.monomial(i)] + [ self.product_on_basis(i,j) - for j in range(n) ] + M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j) + for j in range(n) ] for i in range(n) ] return table(M, header_row=True, header_column=True, frame=True) @@ -687,7 +943,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): Why implement this for non-matrix algebras? Avoiding special cases for the :class:`BilinearFormEJA` pays with simplicity in its own right. But mainly, we would like to be able to assume - that elements of a :class:`DirectSumEJA` can be displayed + that elements of a :class:`CartesianProductEJA` can be displayed nicely, without having to have special classes for direct sums one of whose components was a matrix algebra. @@ -700,7 +956,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: J = RealSymmetricEJA(2) sage: J.basis() - Finite family {0: e0, 1: e1, 2: e2} + Finite family {0: b0, 1: b1, 2: b2} sage: J.matrix_basis() ( [1 0] [ 0 0.7071067811865475?] [0 0] @@ -711,7 +967,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: J = JordanSpinEJA(2) sage: J.basis() - Finite family {0: e0, 1: e1} + Finite family {0: b0, 1: b1} sage: J.matrix_basis() ( [1] [0] @@ -727,17 +983,56 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): we think of them as matrices (including column vectors of the appropriate size). - Generally this will be an `n`-by-`1` column-vector space, + "By default" this will be an `n`-by-`1` column-matrix space, except when the algebra is trivial. There it's `n`-by-`n` (where `n` is zero), to ensure that two elements of the matrix - space (empty matrices) can be multiplied. + space (empty matrices) can be multiplied. For algebras of + matrices, this returns the space in which their + real embeddings live. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA, + ....: JordanSpinEJA, + ....: QuaternionHermitianEJA, + ....: TrivialEJA) + + EXAMPLES: + + By default, the matrix representation is just a column-matrix + equivalent to the vector representation:: + + sage: J = JordanSpinEJA(3) + sage: J.matrix_space() + Full MatrixSpace of 3 by 1 dense matrices over Algebraic + Real Field + + The matrix representation in the trivial algebra is + zero-by-zero instead of the usual `n`-by-one:: + + sage: J = TrivialEJA() + sage: J.matrix_space() + Full MatrixSpace of 0 by 0 dense matrices over Algebraic + Real Field + + The matrix space for complex/quaternion Hermitian matrix EJA + is the space in which their real-embeddings live, not the + original complex/quaternion matrix space:: + + sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False) + sage: J.matrix_space() + Full MatrixSpace of 4 by 4 dense matrices over Rational Field + sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False) + sage: J.matrix_space() + Module of 1 by 1 matrices with entries in Quaternion + Algebra (-1, -1) with base ring Rational Field over + the scalar ring Rational Field - Matrix algebras override this with something more useful. """ if self.is_trivial(): return MatrixSpace(self.base_ring(), 0) else: - return self._matrix_basis[0].matrix_space() + return self.matrix_basis()[0].parent() @cached_method @@ -756,20 +1051,20 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: J = HadamardEJA(5) sage: J.one() - e0 + e1 + e2 + e3 + e4 + b0 + b1 + b2 + b3 + b4 The unit element in the Hadamard EJA is inherited in the subalgebras generated by its elements:: sage: J = HadamardEJA(5) sage: J.one() - e0 + e1 + e2 + e3 + e4 + b0 + b1 + b2 + b3 + b4 sage: x = sum(J.gens()) sage: A = x.subalgebra_generated_by(orthonormalize=False) sage: A.one() - f0 + c0 sage: A.one().superalgebra_element() - e0 + e1 + e2 + e3 + e4 + b0 + b1 + b2 + b3 + b4 TESTS: @@ -993,14 +1288,12 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): if not c.is_idempotent(): raise ValueError("element is not idempotent: %s" % c) - from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra - # Default these to what they should be if they turn out to be # trivial, because eigenspaces_left() won't return eigenvalues # corresponding to trivial spaces (e.g. it returns only the # eigenspace corresponding to lambda=1 if you take the # decomposition relative to the identity element). - trivial = FiniteDimensionalEJASubalgebra(self, ()) + trivial = self.subalgebra(()) J0 = trivial # eigenvalue zero J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half J1 = trivial # eigenvalue one @@ -1010,9 +1303,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): J5 = eigspace else: gens = tuple( self.from_vector(b) for b in eigspace.basis() ) - subalg = FiniteDimensionalEJASubalgebra(self, - gens, - check_axioms=False) + subalg = self.subalgebra(gens, check_axioms=False) if eigval == 0: J0 = subalg elif eigval == 1: @@ -1101,6 +1392,21 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): r""" The `r` polynomial coefficients of the "characteristic polynomial of" function. + + SETUP:: + + sage: from mjo.eja.eja_algebra import random_eja + + TESTS: + + The theory shows that these are all homogeneous polynomials of + a known degree:: + + sage: set_random_seed() + sage: J = random_eja() + sage: all(p.is_homogeneous() for p in J._charpoly_coefficients()) + True + """ n = self.dimension() R = self.coordinate_polynomial_ring() @@ -1136,10 +1442,17 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): # The theory says that only the first "r" coefficients are # nonzero, and they actually live in the original polynomial - # ring and not the fraction field. We negate them because - # in the actual characteristic polynomial, they get moved - # to the other side where x^r lives. - return -A_rref.solve_right(E*b).change_ring(R)[:r] + # ring and not the fraction field. We negate them because in + # the actual characteristic polynomial, they get moved to the + # other side where x^r lives. We don't bother to trim A_rref + # down to a square matrix and solve the resulting system, + # because the upper-left r-by-r portion of A_rref is + # guaranteed to be the identity matrix, so e.g. + # + # A_rref.solve_right(Y) + # + # would just be returning Y. + return (-E*b)[:r].change_ring(R) @cached_method def rank(self): @@ -1200,7 +1513,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): sage: set_random_seed() # long time sage: J = random_eja() # long time - sage: caches = J.rank() # long time + sage: cached = J.rank() # long time sage: J.rank.clear_cache() # long time sage: J.rank() == cached # long time True @@ -1209,6 +1522,14 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): return len(self._charpoly_coefficients()) + def subalgebra(self, basis, **kwargs): + r""" + Create a subalgebra of this algebra from the given basis. + """ + from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra + return FiniteDimensionalEJASubalgebra(self, basis, **kwargs) + + def vector_space(self): """ Return the vector space that underlies this algebra. @@ -1227,11 +1548,10 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): return self.zero().to_vector().parent().ambient_vector_space() - Element = FiniteDimensionalEJAElement class RationalBasisEJA(FiniteDimensionalEJA): r""" - New class for algebras whose supplied basis elements have all rational entries. + Algebras whose supplied basis elements have all rational entries. SETUP:: @@ -1262,9 +1582,20 @@ class RationalBasisEJA(FiniteDimensionalEJA): if check_field: # Abuse the check_field parameter to check that the entries of # out basis (in ambient coordinates) are in the field QQ. - if not all( all(b_i in QQ for b_i in b.list()) for b in basis ): + # Use _all2list to get the vector coordinates of octonion + # entries and not the octonions themselves (which are not + # rational). + if not all( all(b_i in QQ for b_i in _all2list(b)) + for b in basis ): raise TypeError("basis not rational") + super().__init__(basis, + jordan_product, + inner_product, + field=field, + check_field=check_field, + **kwargs) + self._rational_algebra = None if field is not QQ: # There's no point in constructing the extra algebra if this @@ -1278,17 +1609,11 @@ class RationalBasisEJA(FiniteDimensionalEJA): jordan_product, inner_product, field=QQ, + associative=self.is_associative(), orthonormalize=False, check_field=False, check_axioms=False) - super().__init__(basis, - jordan_product, - inner_product, - field=field, - check_field=check_field, - **kwargs) - @cached_method def _charpoly_coefficients(self): r""" @@ -1343,7 +1668,7 @@ class RationalBasisEJA(FiniteDimensionalEJA): subs_dict = { X[i]: BX[i] for i in range(len(X)) } return tuple( a_i.subs(subs_dict) for a_i in a ) -class ConcreteEJA(RationalBasisEJA): +class ConcreteEJA(FiniteDimensionalEJA): r""" A class for the Euclidean Jordan algebras that we know by name. @@ -1413,132 +1738,147 @@ class ConcreteEJA(RationalBasisEJA): class MatrixEJA: @staticmethod - def dimension_over_reals(): - r""" - The dimension of this matrix's base ring over the reals. + def _denormalized_basis(A): + """ + Returns a basis for the space of complex Hermitian n-by-n matrices. + + Why do we embed these? Basically, because all of numerical linear + algebra assumes that you're working with vectors consisting of `n` + entries from a field and scalars from the same field. There's no way + to tell SageMath that (for example) the vectors contain complex + numbers, while the scalar field is real. - The reals are dimension one over themselves, obviously; that's - just `\mathbb{R}^{1}`. Likewise, the complex numbers `a + bi` - have dimension two. Finally, the quaternions have dimension - four over the reals. + SETUP:: - This is used to determine the size of the matrix returned from - :meth:`real_embed`, among other things. - """ - raise NotImplementedError + sage: from mjo.hurwitz import (ComplexMatrixAlgebra, + ....: QuaternionMatrixAlgebra, + ....: OctonionMatrixAlgebra) + sage: from mjo.eja.eja_algebra import MatrixEJA - @classmethod - def real_embed(cls,M): - """ - Embed the matrix ``M`` into a space of real matrices. + TESTS:: - The matrix ``M`` can have entries in any field at the moment: - the real numbers, complex numbers, or quaternions. And although - they are not a field, we can probably support octonions at some - point, too. This function returns a real matrix that "acts like" - the original with respect to matrix multiplication; i.e. + sage: set_random_seed() + sage: n = ZZ.random_element(1,5) + sage: A = MatrixSpace(QQ, n) + sage: B = MatrixEJA._denormalized_basis(A) + sage: all( M.is_hermitian() for M in B) + True - real_embed(M*N) = real_embed(M)*real_embed(N) + :: - """ - if M.ncols() != M.nrows(): - raise ValueError("the matrix 'M' must be square") - return M + sage: set_random_seed() + sage: n = ZZ.random_element(1,5) + sage: A = ComplexMatrixAlgebra(n, scalars=QQ) + sage: B = MatrixEJA._denormalized_basis(A) + sage: all( M.is_hermitian() for M in B) + True + :: + + sage: set_random_seed() + sage: n = ZZ.random_element(1,5) + sage: A = QuaternionMatrixAlgebra(n, scalars=QQ) + sage: B = MatrixEJA._denormalized_basis(A) + sage: all( M.is_hermitian() for M in B ) + True + + :: + + sage: set_random_seed() + sage: n = ZZ.random_element(1,5) + sage: A = OctonionMatrixAlgebra(n, scalars=QQ) + sage: B = MatrixEJA._denormalized_basis(A) + sage: all( M.is_hermitian() for M in B ) + True - @classmethod - def real_unembed(cls,M): - """ - The inverse of :meth:`real_embed`. """ - if M.ncols() != M.nrows(): - raise ValueError("the matrix 'M' must be square") - if not ZZ(M.nrows()).mod(cls.dimension_over_reals()).is_zero(): - raise ValueError("the matrix 'M' must be a real embedding") - return M + # These work for real MatrixSpace, whose monomials only have + # two coordinates (because the last one would always be "1"). + es = A.base_ring().gens() + gen = lambda A,m: A.monomial(m[:2]) + + if hasattr(A, 'entry_algebra_gens'): + # We've got a MatrixAlgebra, and its monomials will have + # three coordinates. + es = A.entry_algebra_gens() + gen = lambda A,m: A.monomial(m) + + basis = [] + for i in range(A.nrows()): + for j in range(i+1): + if i == j: + E_ii = gen(A, (i,j,es[0])) + basis.append(E_ii) + else: + for e in es: + E_ij = gen(A, (i,j,e)) + E_ij += E_ij.conjugate_transpose() + basis.append(E_ij) + + return tuple( basis ) @staticmethod def jordan_product(X,Y): return (X*Y + Y*X)/2 - @classmethod - def trace_inner_product(cls,X,Y): + @staticmethod + def trace_inner_product(X,Y): r""" - Compute the trace inner-product of two real-embeddings. + A trace inner-product for matrices that aren't embedded in the + reals. It takes MATRICES as arguments, not EJA elements. SETUP:: sage: from mjo.eja.eja_algebra import (RealSymmetricEJA, ....: ComplexHermitianEJA, - ....: QuaternionHermitianEJA) + ....: QuaternionHermitianEJA, + ....: OctonionHermitianEJA) EXAMPLES:: - This gives the same answer as it would if we computed the trace - from the unembedded (original) matrices:: + sage: J = RealSymmetricEJA(2,field=QQ,orthonormalize=False) + sage: I = J.one().to_matrix() + sage: J.trace_inner_product(I, -I) + -2 - sage: set_random_seed() - sage: J = RealSymmetricEJA.random_instance() - sage: x,y = J.random_elements(2) - sage: Xe = x.to_matrix() - sage: Ye = y.to_matrix() - sage: X = J.real_unembed(Xe) - sage: Y = J.real_unembed(Ye) - sage: expected = (X*Y).trace() - sage: actual = J.trace_inner_product(Xe,Ye) - sage: actual == expected - True + :: + + sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False) + sage: I = J.one().to_matrix() + sage: J.trace_inner_product(I, -I) + -2 :: - sage: set_random_seed() - sage: J = ComplexHermitianEJA.random_instance() - sage: x,y = J.random_elements(2) - sage: Xe = x.to_matrix() - sage: Ye = y.to_matrix() - sage: X = J.real_unembed(Xe) - sage: Y = J.real_unembed(Ye) - sage: expected = (X*Y).trace().real() - sage: actual = J.trace_inner_product(Xe,Ye) - sage: actual == expected - True + sage: J = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False) + sage: I = J.one().to_matrix() + sage: J.trace_inner_product(I, -I) + -2 :: - sage: set_random_seed() - sage: J = QuaternionHermitianEJA.random_instance() - sage: x,y = J.random_elements(2) - sage: Xe = x.to_matrix() - sage: Ye = y.to_matrix() - sage: X = J.real_unembed(Xe) - sage: Y = J.real_unembed(Ye) - sage: expected = (X*Y).trace().coefficient_tuple()[0] - sage: actual = J.trace_inner_product(Xe,Ye) - sage: actual == expected - True + sage: J = OctonionHermitianEJA(2,field=QQ,orthonormalize=False) + sage: I = J.one().to_matrix() + sage: J.trace_inner_product(I, -I) + -2 """ - Xu = cls.real_unembed(X) - Yu = cls.real_unembed(Y) - tr = (Xu*Yu).trace() - - try: - # Works in QQ, AA, RDF, et cetera. - return tr.real() - except AttributeError: - # A quaternion doesn't have a real() method, but does - # have coefficient_tuple() method that returns the - # coefficients of 1, i, j, and k -- in that order. + tr = (X*Y).trace() + if hasattr(tr, 'coefficient'): + # Works for octonions, and has to come first because they + # also have a "real()" method that doesn't return an + # element of the scalar ring. + return tr.coefficient(0) + elif hasattr(tr, 'coefficient_tuple'): + # Works for quaternions. return tr.coefficient_tuple()[0] + # Works for real and complex numbers. + return tr.real() -class RealMatrixEJA(MatrixEJA): - @staticmethod - def dimension_over_reals(): - return 1 -class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA): +class RealSymmetricEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): """ The rank-n simple EJA consisting of real symmetric n-by-n matrices, the usual symmetric Jordan product, and the trace inner @@ -1551,19 +1891,19 @@ class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA): EXAMPLES:: sage: J = RealSymmetricEJA(2) - sage: e0, e1, e2 = J.gens() - sage: e0*e0 - e0 - sage: e1*e1 - 1/2*e0 + 1/2*e2 - sage: e2*e2 - e2 + sage: b0, b1, b2 = J.gens() + sage: b0*b0 + b0 + sage: b1*b1 + 1/2*b0 + 1/2*b2 + sage: b2*b2 + b2 In theory, our "field" can be any subfield of the reals:: - sage: RealSymmetricEJA(2, field=RDF) + sage: RealSymmetricEJA(2, field=RDF, check_axioms=True) Euclidean Jordan algebra of dimension 3 over Real Double Field - sage: RealSymmetricEJA(2, field=RR) + sage: RealSymmetricEJA(2, field=RR, check_axioms=True) Euclidean Jordan algebra of dimension 3 over Real Field with 53 bits of precision @@ -1603,38 +1943,6 @@ class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA): Euclidean Jordan algebra of dimension 0 over Algebraic Real Field """ - @classmethod - def _denormalized_basis(cls, n): - """ - Return a basis for the space of real symmetric n-by-n matrices. - - SETUP:: - - sage: from mjo.eja.eja_algebra import RealSymmetricEJA - - TESTS:: - - sage: set_random_seed() - sage: n = ZZ.random_element(1,5) - sage: B = RealSymmetricEJA._denormalized_basis(n) - sage: all( M.is_symmetric() for M in B) - True - - """ - # The basis of symmetric matrices, as matrices, in their R^(n-by-n) - # coordinates. - S = [] - for i in range(n): - for j in range(i+1): - Eij = matrix(ZZ, n, lambda k,l: k==i and l==j) - if i == j: - Sij = Eij - else: - Sij = Eij + Eij.transpose() - S.append(Sij) - return tuple(S) - - @staticmethod def _max_random_instance_size(): return 4 # Dimension 10 @@ -1647,160 +1955,27 @@ class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA): n = ZZ.random_element(cls._max_random_instance_size() + 1) return cls(n, **kwargs) - def __init__(self, n, **kwargs): + def __init__(self, n, field=AA, **kwargs): # We know this is a valid EJA, but will double-check # if the user passes check_axioms=True. if "check_axioms" not in kwargs: kwargs["check_axioms"] = False - super(RealSymmetricEJA, self).__init__(self._denormalized_basis(n), - self.jordan_product, - self.trace_inner_product, - **kwargs) + A = MatrixSpace(field, n) + super().__init__(self._denormalized_basis(A), + self.jordan_product, + self.trace_inner_product, + field=field, + **kwargs) # TODO: this could be factored out somehow, but is left here # because the MatrixEJA is not presently a subclass of the # FDEJA class that defines rank() and one(). self.rank.set_cache(n) - idV = matrix.identity(ZZ, self.dimension_over_reals()*n) - self.one.set_cache(self(idV)) + self.one.set_cache(self(A.one())) -class ComplexMatrixEJA(MatrixEJA): - @staticmethod - def dimension_over_reals(): - return 2 - - @classmethod - def real_embed(cls,M): - """ - Embed the n-by-n complex matrix ``M`` into the space of real - matrices of size 2n-by-2n via the map the sends each entry `z = a + - bi` to the block matrix ``[[a,b],[-b,a]]``. - - SETUP:: - - sage: from mjo.eja.eja_algebra import ComplexMatrixEJA - - EXAMPLES:: - - sage: F = QuadraticField(-1, 'I') - sage: x1 = F(4 - 2*i) - sage: x2 = F(1 + 2*i) - sage: x3 = F(-i) - sage: x4 = F(6) - sage: M = matrix(F,2,[[x1,x2],[x3,x4]]) - sage: ComplexMatrixEJA.real_embed(M) - [ 4 -2| 1 2] - [ 2 4|-2 1] - [-----+-----] - [ 0 -1| 6 0] - [ 1 0| 0 6] - - TESTS: - - Embedding is a homomorphism (isomorphism, in fact):: - - sage: set_random_seed() - sage: n = ZZ.random_element(3) - sage: F = QuadraticField(-1, 'I') - sage: X = random_matrix(F, n) - sage: Y = random_matrix(F, n) - sage: Xe = ComplexMatrixEJA.real_embed(X) - sage: Ye = ComplexMatrixEJA.real_embed(Y) - sage: XYe = ComplexMatrixEJA.real_embed(X*Y) - sage: Xe*Ye == XYe - True - - """ - super(ComplexMatrixEJA,cls).real_embed(M) - n = M.nrows() - - # We don't need any adjoined elements... - field = M.base_ring().base_ring() - - blocks = [] - for z in M.list(): - a = z.list()[0] # real part, I guess - b = z.list()[1] # imag part, I guess - blocks.append(matrix(field, 2, [[a,b],[-b,a]])) - - return matrix.block(field, n, blocks) - - - @classmethod - def real_unembed(cls,M): - """ - The inverse of _embed_complex_matrix(). - - SETUP:: - - sage: from mjo.eja.eja_algebra import ComplexMatrixEJA - - EXAMPLES:: - - sage: A = matrix(QQ,[ [ 1, 2, 3, 4], - ....: [-2, 1, -4, 3], - ....: [ 9, 10, 11, 12], - ....: [-10, 9, -12, 11] ]) - sage: ComplexMatrixEJA.real_unembed(A) - [ 2*I + 1 4*I + 3] - [ 10*I + 9 12*I + 11] - - TESTS: - - Unembedding is the inverse of embedding:: - - sage: set_random_seed() - sage: F = QuadraticField(-1, 'I') - sage: M = random_matrix(F, 3) - sage: Me = ComplexMatrixEJA.real_embed(M) - sage: ComplexMatrixEJA.real_unembed(Me) == M - True - - """ - super(ComplexMatrixEJA,cls).real_unembed(M) - n = ZZ(M.nrows()) - d = cls.dimension_over_reals() - - # If "M" was normalized, its base ring might have roots - # adjoined and they can stick around after unembedding. - field = M.base_ring() - R = PolynomialRing(field, 'z') - z = R.gen() - - # Sage doesn't know how to adjoin the complex "i" (the root of - # x^2 + 1) to a field in a general way. Here, we just enumerate - # all of the cases that I have cared to support so far. - if field is AA: - # Sage doesn't know how to embed AA into QQbar, i.e. how - # to adjoin sqrt(-1) to AA. - F = QQbar - elif not field.is_exact(): - # RDF or RR - F = field.complex_field() - else: - # Works for QQ and... maybe some other fields. - F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt()) - i = F.gen() - - # Go top-left to bottom-right (reading order), converting every - # 2-by-2 block we see to a single complex element. - elements = [] - for k in range(n/d): - for j in range(n/d): - submat = M[d*k:d*k+d,d*j:d*j+d] - if submat[0,0] != submat[1,1]: - raise ValueError('bad on-diagonal submatrix') - if submat[0,1] != -submat[1,0]: - raise ValueError('bad off-diagonal submatrix') - z = submat[0,0] + submat[0,1]*i - elements.append(z) - - return matrix(F, n/d, elements) - - -class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA): +class ComplexHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): """ The rank-n simple EJA consisting of complex Hermitian n-by-n matrices over the real numbers, the usual symmetric Jordan product, @@ -1815,9 +1990,9 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA): In theory, our "field" can be any subfield of the reals:: - sage: ComplexHermitianEJA(2, field=RDF) + sage: ComplexHermitianEJA(2, field=RDF, check_axioms=True) Euclidean Jordan algebra of dimension 4 over Real Double Field - sage: ComplexHermitianEJA(2, field=RR) + sage: ComplexHermitianEJA(2, field=RR, check_axioms=True) Euclidean Jordan algebra of dimension 4 over Real Field with 53 bits of precision @@ -1857,85 +2032,24 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA): Euclidean Jordan algebra of dimension 0 over Algebraic Real Field """ - - @classmethod - def _denormalized_basis(cls, n): - """ - Returns a basis for the space of complex Hermitian n-by-n matrices. - - Why do we embed these? Basically, because all of numerical linear - algebra assumes that you're working with vectors consisting of `n` - entries from a field and scalars from the same field. There's no way - to tell SageMath that (for example) the vectors contain complex - numbers, while the scalar field is real. - - SETUP:: - - sage: from mjo.eja.eja_algebra import ComplexHermitianEJA - - TESTS:: - - sage: set_random_seed() - sage: n = ZZ.random_element(1,5) - sage: B = ComplexHermitianEJA._denormalized_basis(n) - sage: all( M.is_symmetric() for M in B) - True - - """ - field = ZZ - R = PolynomialRing(field, 'z') - z = R.gen() - F = field.extension(z**2 + 1, 'I') - I = F.gen(1) - - # This is like the symmetric case, but we need to be careful: - # - # * We want conjugate-symmetry, not just symmetry. - # * The diagonal will (as a result) be real. - # - S = [] - Eij = matrix.zero(F,n) - for i in range(n): - for j in range(i+1): - # "build" E_ij - Eij[i,j] = 1 - if i == j: - Sij = cls.real_embed(Eij) - S.append(Sij) - else: - # The second one has a minus because it's conjugated. - Eij[j,i] = 1 # Eij = Eij + Eij.transpose() - Sij_real = cls.real_embed(Eij) - S.append(Sij_real) - # Eij = I*Eij - I*Eij.transpose() - Eij[i,j] = I - Eij[j,i] = -I - Sij_imag = cls.real_embed(Eij) - S.append(Sij_imag) - Eij[j,i] = 0 - # "erase" E_ij - Eij[i,j] = 0 - - # Since we embedded these, we can drop back to the "field" that we - # started with instead of the complex extension "F". - return tuple( s.change_ring(field) for s in S ) - - - def __init__(self, n, **kwargs): + def __init__(self, n, field=AA, **kwargs): # We know this is a valid EJA, but will double-check # if the user passes check_axioms=True. if "check_axioms" not in kwargs: kwargs["check_axioms"] = False - super(ComplexHermitianEJA, self).__init__(self._denormalized_basis(n), - self.jordan_product, - self.trace_inner_product, - **kwargs) + from mjo.hurwitz import ComplexMatrixAlgebra + A = ComplexMatrixAlgebra(n, scalars=field) + super().__init__(self._denormalized_basis(A), + self.jordan_product, + self.trace_inner_product, + field=field, + **kwargs) + # TODO: this could be factored out somehow, but is left here # because the MatrixEJA is not presently a subclass of the # FDEJA class that defines rank() and one(). self.rank.set_cache(n) - idV = matrix.identity(ZZ, self.dimension_over_reals()*n) - self.one.set_cache(self(idV)) + self.one.set_cache(self(A.one())) @staticmethod def _max_random_instance_size(): @@ -1949,137 +2063,8 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA): n = ZZ.random_element(cls._max_random_instance_size() + 1) return cls(n, **kwargs) -class QuaternionMatrixEJA(MatrixEJA): - @staticmethod - def dimension_over_reals(): - return 4 - - @classmethod - def real_embed(cls,M): - """ - Embed the n-by-n quaternion matrix ``M`` into the space of real - matrices of size 4n-by-4n by first sending each quaternion entry `z - = a + bi + cj + dk` to the block-complex matrix ``[[a + bi, - c+di],[-c + di, a-bi]]`, and then embedding those into a real - matrix. - - SETUP:: - - sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA - - EXAMPLES:: - - sage: Q = QuaternionAlgebra(QQ,-1,-1) - sage: i,j,k = Q.gens() - sage: x = 1 + 2*i + 3*j + 4*k - sage: M = matrix(Q, 1, [[x]]) - sage: QuaternionMatrixEJA.real_embed(M) - [ 1 2 3 4] - [-2 1 -4 3] - [-3 4 1 -2] - [-4 -3 2 1] - - Embedding is a homomorphism (isomorphism, in fact):: - - sage: set_random_seed() - sage: n = ZZ.random_element(2) - sage: Q = QuaternionAlgebra(QQ,-1,-1) - sage: X = random_matrix(Q, n) - sage: Y = random_matrix(Q, n) - sage: Xe = QuaternionMatrixEJA.real_embed(X) - sage: Ye = QuaternionMatrixEJA.real_embed(Y) - sage: XYe = QuaternionMatrixEJA.real_embed(X*Y) - sage: Xe*Ye == XYe - True - - """ - super(QuaternionMatrixEJA,cls).real_embed(M) - quaternions = M.base_ring() - n = M.nrows() - - F = QuadraticField(-1, 'I') - i = F.gen() - blocks = [] - for z in M.list(): - t = z.coefficient_tuple() - a = t[0] - b = t[1] - c = t[2] - d = t[3] - cplxM = matrix(F, 2, [[ a + b*i, c + d*i], - [-c + d*i, a - b*i]]) - realM = ComplexMatrixEJA.real_embed(cplxM) - blocks.append(realM) - - # We should have real entries by now, so use the realest field - # we've got for the return value. - return matrix.block(quaternions.base_ring(), n, blocks) - - - - @classmethod - def real_unembed(cls,M): - """ - The inverse of _embed_quaternion_matrix(). - - SETUP:: - - sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA - - EXAMPLES:: - - sage: M = matrix(QQ, [[ 1, 2, 3, 4], - ....: [-2, 1, -4, 3], - ....: [-3, 4, 1, -2], - ....: [-4, -3, 2, 1]]) - sage: QuaternionMatrixEJA.real_unembed(M) - [1 + 2*i + 3*j + 4*k] - - TESTS: - - Unembedding is the inverse of embedding:: - - sage: set_random_seed() - sage: Q = QuaternionAlgebra(QQ, -1, -1) - sage: M = random_matrix(Q, 3) - sage: Me = QuaternionMatrixEJA.real_embed(M) - sage: QuaternionMatrixEJA.real_unembed(Me) == M - True - - """ - super(QuaternionMatrixEJA,cls).real_unembed(M) - n = ZZ(M.nrows()) - d = cls.dimension_over_reals() - - # Use the base ring of the matrix to ensure that its entries can be - # multiplied by elements of the quaternion algebra. - field = M.base_ring() - Q = QuaternionAlgebra(field,-1,-1) - i,j,k = Q.gens() - - # Go top-left to bottom-right (reading order), converting every - # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1 - # quaternion block. - elements = [] - for l in range(n/d): - for m in range(n/d): - submat = ComplexMatrixEJA.real_unembed( - M[d*l:d*l+d,d*m:d*m+d] ) - if submat[0,0] != submat[1,1].conjugate(): - raise ValueError('bad on-diagonal submatrix') - if submat[0,1] != -submat[1,0].conjugate(): - raise ValueError('bad off-diagonal submatrix') - z = submat[0,0].real() - z += submat[0,0].imag()*i - z += submat[0,1].real()*j - z += submat[0,1].imag()*k - elements.append(z) - - return matrix(Q, n/d, elements) - - -class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA): +class QuaternionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): r""" The rank-n simple EJA consisting of self-adjoint n-by-n quaternion matrices, the usual symmetric Jordan product, and the @@ -2094,9 +2079,9 @@ class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA): In theory, our "field" can be any subfield of the reals:: - sage: QuaternionHermitianEJA(2, field=RDF) + sage: QuaternionHermitianEJA(2, field=RDF, check_axioms=True) Euclidean Jordan algebra of dimension 6 over Real Double Field - sage: QuaternionHermitianEJA(2, field=RR) + sage: QuaternionHermitianEJA(2, field=RR, check_axioms=True) Euclidean Jordan algebra of dimension 6 over Real Field with 53 bits of precision @@ -2136,94 +2121,24 @@ class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA): Euclidean Jordan algebra of dimension 0 over Algebraic Real Field """ - @classmethod - def _denormalized_basis(cls, n): - """ - Returns a basis for the space of quaternion Hermitian n-by-n matrices. - - Why do we embed these? Basically, because all of numerical - linear algebra assumes that you're working with vectors consisting - of `n` entries from a field and scalars from the same field. There's - no way to tell SageMath that (for example) the vectors contain - complex numbers, while the scalar field is real. - - SETUP:: - - sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA - - TESTS:: - - sage: set_random_seed() - sage: n = ZZ.random_element(1,5) - sage: B = QuaternionHermitianEJA._denormalized_basis(n) - sage: all( M.is_symmetric() for M in B ) - True - - """ - field = ZZ - Q = QuaternionAlgebra(QQ,-1,-1) - I,J,K = Q.gens() - - # This is like the symmetric case, but we need to be careful: - # - # * We want conjugate-symmetry, not just symmetry. - # * The diagonal will (as a result) be real. - # - S = [] - Eij = matrix.zero(Q,n) - for i in range(n): - for j in range(i+1): - # "build" E_ij - Eij[i,j] = 1 - if i == j: - Sij = cls.real_embed(Eij) - S.append(Sij) - else: - # The second, third, and fourth ones have a minus - # because they're conjugated. - # Eij = Eij + Eij.transpose() - Eij[j,i] = 1 - Sij_real = cls.real_embed(Eij) - S.append(Sij_real) - # Eij = I*(Eij - Eij.transpose()) - Eij[i,j] = I - Eij[j,i] = -I - Sij_I = cls.real_embed(Eij) - S.append(Sij_I) - # Eij = J*(Eij - Eij.transpose()) - Eij[i,j] = J - Eij[j,i] = -J - Sij_J = cls.real_embed(Eij) - S.append(Sij_J) - # Eij = K*(Eij - Eij.transpose()) - Eij[i,j] = K - Eij[j,i] = -K - Sij_K = cls.real_embed(Eij) - S.append(Sij_K) - Eij[j,i] = 0 - # "erase" E_ij - Eij[i,j] = 0 - - # Since we embedded these, we can drop back to the "field" that we - # started with instead of the quaternion algebra "Q". - return tuple( s.change_ring(field) for s in S ) - - - def __init__(self, n, **kwargs): + def __init__(self, n, field=AA, **kwargs): # We know this is a valid EJA, but will double-check # if the user passes check_axioms=True. if "check_axioms" not in kwargs: kwargs["check_axioms"] = False - super(QuaternionHermitianEJA, self).__init__(self._denormalized_basis(n), - self.jordan_product, - self.trace_inner_product, - **kwargs) + from mjo.hurwitz import QuaternionMatrixAlgebra + A = QuaternionMatrixAlgebra(n, scalars=field) + super().__init__(self._denormalized_basis(A), + self.jordan_product, + self.trace_inner_product, + field=field, + **kwargs) + # TODO: this could be factored out somehow, but is left here # because the MatrixEJA is not presently a subclass of the # FDEJA class that defines rank() and one(). self.rank.set_cache(n) - idV = matrix.identity(ZZ, self.dimension_over_reals()*n) - self.one.set_cache(self(idV)) + self.one.set_cache(self(A.one())) @staticmethod @@ -2241,15 +2156,160 @@ class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA): n = ZZ.random_element(cls._max_random_instance_size() + 1) return cls(n, **kwargs) +class OctonionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA): + r""" + SETUP:: + + sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA, + ....: OctonionHermitianEJA) + + EXAMPLES: + + The 3-by-3 algebra satisfies the axioms of an EJA:: + + sage: OctonionHermitianEJA(3, # long time + ....: field=QQ, # long time + ....: orthonormalize=False, # long time + ....: check_axioms=True) # long time + Euclidean Jordan algebra of dimension 27 over Rational Field + + After a change-of-basis, the 2-by-2 algebra has the same + multiplication table as the ten-dimensional Jordan spin algebra:: + + sage: b = OctonionHermitianEJA._denormalized_basis(2,QQ) + sage: basis = (b[0] + b[9],) + b[1:9] + (b[0] - b[9],) + sage: jp = OctonionHermitianEJA.jordan_product + sage: ip = OctonionHermitianEJA.trace_inner_product + sage: J = FiniteDimensionalEJA(basis, + ....: jp, + ....: ip, + ....: field=QQ, + ....: orthonormalize=False) + sage: J.multiplication_table() + +----++----+----+----+----+----+----+----+----+----+----+ + | * || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 | + +====++====+====+====+====+====+====+====+====+====+====+ + | b0 || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 | + +----++----+----+----+----+----+----+----+----+----+----+ + | b1 || b1 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + +----++----+----+----+----+----+----+----+----+----+----+ + | b2 || b2 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + +----++----+----+----+----+----+----+----+----+----+----+ + | b3 || b3 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | + +----++----+----+----+----+----+----+----+----+----+----+ + | b4 || b4 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | + +----++----+----+----+----+----+----+----+----+----+----+ + | b5 || b5 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | + +----++----+----+----+----+----+----+----+----+----+----+ + | b6 || b6 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | + +----++----+----+----+----+----+----+----+----+----+----+ + | b7 || b7 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | + +----++----+----+----+----+----+----+----+----+----+----+ + | b8 || b8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | + +----++----+----+----+----+----+----+----+----+----+----+ + | b9 || b9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | + +----++----+----+----+----+----+----+----+----+----+----+ + + TESTS: + + We can actually construct the 27-dimensional Albert algebra, + and we get the right unit element if we recompute it:: + + sage: J = OctonionHermitianEJA(3, # long time + ....: field=QQ, # long time + ....: orthonormalize=False) # long time + sage: J.one.clear_cache() # long time + sage: J.one() # long time + b0 + b9 + b26 + sage: J.one().to_matrix() # long time + +----+----+----+ + | e0 | 0 | 0 | + +----+----+----+ + | 0 | e0 | 0 | + +----+----+----+ + | 0 | 0 | e0 | + +----+----+----+ + + The 2-by-2 algebra is isomorphic to the ten-dimensional Jordan + spin algebra, but just to be sure, we recompute its rank:: + + sage: J = OctonionHermitianEJA(2, # long time + ....: field=QQ, # long time + ....: orthonormalize=False) # long time + sage: J.rank.clear_cache() # long time + sage: J.rank() # long time + 2 -class HadamardEJA(ConcreteEJA): """ - Return the Euclidean Jordan Algebra corresponding to the set - `R^n` under the Hadamard product. + @staticmethod + def _max_random_instance_size(): + r""" + The maximum rank of a random QuaternionHermitianEJA. + """ + return 1 # Dimension 1 + + @classmethod + def random_instance(cls, **kwargs): + """ + Return a random instance of this type of algebra. + """ + n = ZZ.random_element(cls._max_random_instance_size() + 1) + return cls(n, **kwargs) - Note: this is nothing more than the Cartesian product of ``n`` - copies of the spin algebra. Once Cartesian product algebras - are implemented, this can go. + def __init__(self, n, field=AA, **kwargs): + if n > 3: + # Otherwise we don't get an EJA. + raise ValueError("n cannot exceed 3") + + # We know this is a valid EJA, but will double-check + # if the user passes check_axioms=True. + if "check_axioms" not in kwargs: kwargs["check_axioms"] = False + + from mjo.hurwitz import OctonionMatrixAlgebra + A = OctonionMatrixAlgebra(n, scalars=field) + super().__init__(self._denormalized_basis(A), + self.jordan_product, + self.trace_inner_product, + field=field, + **kwargs) + + # TODO: this could be factored out somehow, but is left here + # because the MatrixEJA is not presently a subclass of the + # FDEJA class that defines rank() and one(). + self.rank.set_cache(n) + self.one.set_cache(self(A.one())) + + +class AlbertEJA(OctonionHermitianEJA): + r""" + The Albert algebra is the algebra of three-by-three Hermitian + matrices whose entries are octonions. + + SETUP:: + + sage: from mjo.eja.eja_algebra import AlbertEJA + + EXAMPLES:: + + sage: AlbertEJA(field=QQ, orthonormalize=False) + Euclidean Jordan algebra of dimension 27 over Rational Field + sage: AlbertEJA() # long time + Euclidean Jordan algebra of dimension 27 over Algebraic Real Field + + """ + def __init__(self, *args, **kwargs): + super().__init__(3, *args, **kwargs) + + +class HadamardEJA(RationalBasisEJA, ConcreteEJA): + """ + Return the Euclidean Jordan algebra on `R^n` with the Hadamard + (pointwise real-number multiplication) Jordan product and the + usual inner-product. + + This is nothing more than the Cartesian product of ``n`` copies of + the one-dimensional Jordan spin algebra, and is the most common + example of a non-simple Euclidean Jordan algebra. SETUP:: @@ -2260,19 +2320,19 @@ class HadamardEJA(ConcreteEJA): This multiplication table can be verified by hand:: sage: J = HadamardEJA(3) - sage: e0,e1,e2 = J.gens() - sage: e0*e0 - e0 - sage: e0*e1 + sage: b0,b1,b2 = J.gens() + sage: b0*b0 + b0 + sage: b0*b1 0 - sage: e0*e2 + sage: b0*b2 0 - sage: e1*e1 - e1 - sage: e1*e2 + sage: b1*b1 + b1 + sage: b1*b2 0 - sage: e2*e2 - e2 + sage: b2*b2 + b2 TESTS: @@ -2280,9 +2340,8 @@ class HadamardEJA(ConcreteEJA): sage: HadamardEJA(3, prefix='r').gens() (r0, r1, r2) - """ - def __init__(self, n, **kwargs): + def __init__(self, n, field=AA, **kwargs): if n == 0: jordan_product = lambda x,y: x inner_product = lambda x,y: x @@ -2303,8 +2362,14 @@ class HadamardEJA(ConcreteEJA): if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False if "check_axioms" not in kwargs: kwargs["check_axioms"] = False - column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() ) - super().__init__(column_basis, jordan_product, inner_product, **kwargs) + column_basis = tuple( b.column() + for b in FreeModule(field, n).basis() ) + super().__init__(column_basis, + jordan_product, + inner_product, + field=field, + associative=True, + **kwargs) self.rank.set_cache(n) if n == 0: @@ -2328,7 +2393,7 @@ class HadamardEJA(ConcreteEJA): return cls(n, **kwargs) -class BilinearFormEJA(ConcreteEJA): +class BilinearFormEJA(RationalBasisEJA, ConcreteEJA): r""" The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)`` with the half-trace inner product and jordan product ``x*y = @@ -2410,7 +2475,7 @@ class BilinearFormEJA(ConcreteEJA): True """ - def __init__(self, B, **kwargs): + def __init__(self, B, field=AA, **kwargs): # The matrix "B" is supplied by the user in most cases, # so it makes sense to check whether or not its positive- # definite unless we are specifically asked not to... @@ -2438,11 +2503,20 @@ class BilinearFormEJA(ConcreteEJA): return P([z0] + zbar.list()) n = B.nrows() - column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() ) - super(BilinearFormEJA, self).__init__(column_basis, - jordan_product, - inner_product, - **kwargs) + column_basis = tuple( b.column() + for b in FreeModule(field, n).basis() ) + + # TODO: I haven't actually checked this, but it seems legit. + associative = False + if n <= 2: + associative = True + + super().__init__(column_basis, + jordan_product, + inner_product, + field=field, + associative=associative, + **kwargs) # The rank of this algebra is two, unless we're in a # one-dimensional ambient space (because the rank is bounded @@ -2502,20 +2576,20 @@ class JordanSpinEJA(BilinearFormEJA): This multiplication table can be verified by hand:: sage: J = JordanSpinEJA(4) - sage: e0,e1,e2,e3 = J.gens() - sage: e0*e0 - e0 - sage: e0*e1 - e1 - sage: e0*e2 - e2 - sage: e0*e3 - e3 - sage: e1*e2 + sage: b0,b1,b2,b3 = J.gens() + sage: b0*b0 + b0 + sage: b0*b1 + b1 + sage: b0*b2 + b2 + sage: b0*b3 + b3 + sage: b1*b2 0 - sage: e1*e3 + sage: b1*b3 0 - sage: e2*e3 + sage: b2*b3 0 We can change the generator prefix:: @@ -2536,7 +2610,7 @@ class JordanSpinEJA(BilinearFormEJA): True """ - def __init__(self, n, **kwargs): + def __init__(self, n, *args, **kwargs): # This is a special case of the BilinearFormEJA with the # identity matrix as its bilinear form. B = matrix.identity(ZZ, n) @@ -2547,7 +2621,7 @@ class JordanSpinEJA(BilinearFormEJA): # But also don't pass check_field=False here, because the user # can pass in a field! - super(JordanSpinEJA, self).__init__(B, **kwargs) + super().__init__(B, *args, **kwargs) @staticmethod def _max_random_instance_size(): @@ -2567,7 +2641,7 @@ class JordanSpinEJA(BilinearFormEJA): return cls(n, **kwargs) -class TrivialEJA(ConcreteEJA): +class TrivialEJA(RationalBasisEJA, ConcreteEJA): """ The trivial Euclidean Jordan algebra consisting of only a zero element. @@ -2605,10 +2679,12 @@ class TrivialEJA(ConcreteEJA): if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False if "check_axioms" not in kwargs: kwargs["check_axioms"] = False - super(TrivialEJA, self).__init__(basis, - jordan_product, - inner_product, - **kwargs) + super().__init__(basis, + jordan_product, + inner_product, + associative=True, + **kwargs) + # The rank is zero using my definition, namely the dimension of the # largest subalgebra generated by any element. self.rank.set_cache(0) @@ -2620,244 +2696,556 @@ class TrivialEJA(ConcreteEJA): # inappropriate for us. return cls(**kwargs) -# class DirectSumEJA(ConcreteEJA): -# r""" -# The external (orthogonal) direct sum of two other Euclidean Jordan -# algebras. Essentially the Cartesian product of its two factors. -# Every Euclidean Jordan algebra decomposes into an orthogonal -# direct sum of simple Euclidean Jordan algebras, so no generality -# is lost by providing only this construction. - -# SETUP:: - -# sage: from mjo.eja.eja_algebra import (random_eja, -# ....: HadamardEJA, -# ....: RealSymmetricEJA, -# ....: DirectSumEJA) - -# EXAMPLES:: - -# sage: J1 = HadamardEJA(2) -# sage: J2 = RealSymmetricEJA(3) -# sage: J = DirectSumEJA(J1,J2) -# sage: J.dimension() -# 8 -# sage: J.rank() -# 5 - -# TESTS: - -# The external direct sum construction is only valid when the two factors -# have the same base ring; an error is raised otherwise:: - -# sage: set_random_seed() -# sage: J1 = random_eja(field=AA) -# sage: J2 = random_eja(field=QQ,orthonormalize=False) -# sage: J = DirectSumEJA(J1,J2) -# Traceback (most recent call last): -# ... -# ValueError: algebras must share the same base field - -# """ -# def __init__(self, J1, J2, **kwargs): -# if J1.base_ring() != J2.base_ring(): -# raise ValueError("algebras must share the same base field") -# field = J1.base_ring() - -# self._factors = (J1, J2) -# n1 = J1.dimension() -# n2 = J2.dimension() -# n = n1+n2 -# V = VectorSpace(field, n) -# mult_table = [ [ V.zero() for j in range(i+1) ] -# for i in range(n) ] -# for i in range(n1): -# for j in range(i+1): -# p = (J1.monomial(i)*J1.monomial(j)).to_vector() -# mult_table[i][j] = V(p.list() + [field.zero()]*n2) - -# for i in range(n2): -# for j in range(i+1): -# p = (J2.monomial(i)*J2.monomial(j)).to_vector() -# mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list()) - -# # TODO: build the IP table here from the two constituent IP -# # matrices (it'll be block diagonal, I think). -# ip_table = [ [ field.zero() for j in range(i+1) ] -# for i in range(n) ] -# super(DirectSumEJA, self).__init__(field, -# mult_table, -# ip_table, -# check_axioms=False, -# **kwargs) -# self.rank.set_cache(J1.rank() + J2.rank()) - - -# def factors(self): -# r""" -# Return the pair of this algebra's factors. - -# SETUP:: - -# sage: from mjo.eja.eja_algebra import (HadamardEJA, -# ....: JordanSpinEJA, -# ....: DirectSumEJA) - -# EXAMPLES:: - -# sage: J1 = HadamardEJA(2, field=QQ) -# sage: J2 = JordanSpinEJA(3, field=QQ) -# sage: J = DirectSumEJA(J1,J2) -# sage: J.factors() -# (Euclidean Jordan algebra of dimension 2 over Rational Field, -# Euclidean Jordan algebra of dimension 3 over Rational Field) - -# """ -# return self._factors - -# def projections(self): -# r""" -# Return a pair of projections onto this algebra's factors. - -# SETUP:: - -# sage: from mjo.eja.eja_algebra import (JordanSpinEJA, -# ....: ComplexHermitianEJA, -# ....: DirectSumEJA) - -# EXAMPLES:: - -# sage: J1 = JordanSpinEJA(2) -# sage: J2 = ComplexHermitianEJA(2) -# sage: J = DirectSumEJA(J1,J2) -# sage: (pi_left, pi_right) = J.projections() -# sage: J.one().to_vector() -# (1, 0, 1, 0, 0, 1) -# sage: pi_left(J.one()).to_vector() -# (1, 0) -# sage: pi_right(J.one()).to_vector() -# (1, 0, 0, 1) - -# """ -# (J1,J2) = self.factors() -# m = J1.dimension() -# n = J2.dimension() -# V_basis = self.vector_space().basis() -# # Need to specify the dimensions explicitly so that we don't -# # wind up with a zero-by-zero matrix when we want e.g. a -# # zero-by-two matrix (important for composing things). -# P1 = matrix(self.base_ring(), m, m+n, V_basis[:m]) -# P2 = matrix(self.base_ring(), n, m+n, V_basis[m:]) -# pi_left = FiniteDimensionalEJAOperator(self,J1,P1) -# pi_right = FiniteDimensionalEJAOperator(self,J2,P2) -# return (pi_left, pi_right) - -# def inclusions(self): -# r""" -# Return the pair of inclusion maps from our factors into us. - -# SETUP:: - -# sage: from mjo.eja.eja_algebra import (random_eja, -# ....: JordanSpinEJA, -# ....: RealSymmetricEJA, -# ....: DirectSumEJA) - -# EXAMPLES:: - -# sage: J1 = JordanSpinEJA(3) -# sage: J2 = RealSymmetricEJA(2) -# sage: J = DirectSumEJA(J1,J2) -# sage: (iota_left, iota_right) = J.inclusions() -# sage: iota_left(J1.zero()) == J.zero() -# True -# sage: iota_right(J2.zero()) == J.zero() -# True -# sage: J1.one().to_vector() -# (1, 0, 0) -# sage: iota_left(J1.one()).to_vector() -# (1, 0, 0, 0, 0, 0) -# sage: J2.one().to_vector() -# (1, 0, 1) -# sage: iota_right(J2.one()).to_vector() -# (0, 0, 0, 1, 0, 1) -# sage: J.one().to_vector() -# (1, 0, 0, 1, 0, 1) - -# TESTS: - -# Composing a projection with the corresponding inclusion should -# produce the identity map, and mismatching them should produce -# the zero map:: - -# sage: set_random_seed() -# sage: J1 = random_eja() -# sage: J2 = random_eja() -# sage: J = DirectSumEJA(J1,J2) -# sage: (iota_left, iota_right) = J.inclusions() -# sage: (pi_left, pi_right) = J.projections() -# sage: pi_left*iota_left == J1.one().operator() -# True -# sage: pi_right*iota_right == J2.one().operator() -# True -# sage: (pi_left*iota_right).is_zero() -# True -# sage: (pi_right*iota_left).is_zero() -# True - -# """ -# (J1,J2) = self.factors() -# m = J1.dimension() -# n = J2.dimension() -# V_basis = self.vector_space().basis() -# # Need to specify the dimensions explicitly so that we don't -# # wind up with a zero-by-zero matrix when we want e.g. a -# # two-by-zero matrix (important for composing things). -# I1 = matrix.column(self.base_ring(), m, m+n, V_basis[:m]) -# I2 = matrix.column(self.base_ring(), n, m+n, V_basis[m:]) -# iota_left = FiniteDimensionalEJAOperator(J1,self,I1) -# iota_right = FiniteDimensionalEJAOperator(J2,self,I2) -# return (iota_left, iota_right) - -# def inner_product(self, x, y): -# r""" -# The standard Cartesian inner-product. - -# We project ``x`` and ``y`` onto our factors, and add up the -# inner-products from the subalgebras. - -# SETUP:: - - -# sage: from mjo.eja.eja_algebra import (HadamardEJA, -# ....: QuaternionHermitianEJA, -# ....: DirectSumEJA) - -# EXAMPLE:: - -# sage: J1 = HadamardEJA(3,field=QQ) -# sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False) -# sage: J = DirectSumEJA(J1,J2) -# sage: x1 = J1.one() -# sage: x2 = x1 -# sage: y1 = J2.one() -# sage: y2 = y1 -# sage: x1.inner_product(x2) -# 3 -# sage: y1.inner_product(y2) -# 2 -# sage: J.one().inner_product(J.one()) -# 5 - -# """ -# (pi_left, pi_right) = self.projections() -# x1 = pi_left(x) -# x2 = pi_right(x) -# y1 = pi_left(y) -# y2 = pi_right(y) - -# return (x1.inner_product(y1) + x2.inner_product(y2)) - - - -random_eja = ConcreteEJA.random_instance + +class CartesianProductEJA(FiniteDimensionalEJA): + r""" + The external (orthogonal) direct sum of two or more Euclidean + Jordan algebras. Every Euclidean Jordan algebra decomposes into an + orthogonal direct sum of simple Euclidean Jordan algebras which is + then isometric to a Cartesian product, so no generality is lost by + providing only this construction. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (random_eja, + ....: CartesianProductEJA, + ....: HadamardEJA, + ....: JordanSpinEJA, + ....: RealSymmetricEJA) + + EXAMPLES: + + The Jordan product is inherited from our factors and implemented by + our CombinatorialFreeModule Cartesian product superclass:: + + sage: set_random_seed() + sage: J1 = HadamardEJA(2) + sage: J2 = RealSymmetricEJA(2) + sage: J = cartesian_product([J1,J2]) + sage: x,y = J.random_elements(2) + sage: x*y in J + True + + The ability to retrieve the original factors is implemented by our + CombinatorialFreeModule Cartesian product superclass:: + + sage: J1 = HadamardEJA(2, field=QQ) + sage: J2 = JordanSpinEJA(3, field=QQ) + sage: J = cartesian_product([J1,J2]) + sage: J.cartesian_factors() + (Euclidean Jordan algebra of dimension 2 over Rational Field, + Euclidean Jordan algebra of dimension 3 over Rational Field) + + You can provide more than two factors:: + + sage: J1 = HadamardEJA(2) + sage: J2 = JordanSpinEJA(3) + sage: J3 = RealSymmetricEJA(3) + sage: cartesian_product([J1,J2,J3]) + Euclidean Jordan algebra of dimension 2 over Algebraic Real + Field (+) Euclidean Jordan algebra of dimension 3 over Algebraic + Real Field (+) Euclidean Jordan algebra of dimension 6 over + Algebraic Real Field + + Rank is additive on a Cartesian product:: + + sage: J1 = HadamardEJA(1) + sage: J2 = RealSymmetricEJA(2) + sage: J = cartesian_product([J1,J2]) + sage: J1.rank.clear_cache() + sage: J2.rank.clear_cache() + sage: J.rank.clear_cache() + sage: J.rank() + 3 + sage: J.rank() == J1.rank() + J2.rank() + True + + The same rank computation works over the rationals, with whatever + basis you like:: + + sage: J1 = HadamardEJA(1, field=QQ, orthonormalize=False) + sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False) + sage: J = cartesian_product([J1,J2]) + sage: J1.rank.clear_cache() + sage: J2.rank.clear_cache() + sage: J.rank.clear_cache() + sage: J.rank() + 3 + sage: J.rank() == J1.rank() + J2.rank() + True + + The product algebra will be associative if and only if all of its + components are associative:: + + sage: J1 = HadamardEJA(2) + sage: J1.is_associative() + True + sage: J2 = HadamardEJA(3) + sage: J2.is_associative() + True + sage: J3 = RealSymmetricEJA(3) + sage: J3.is_associative() + False + sage: CP1 = cartesian_product([J1,J2]) + sage: CP1.is_associative() + True + sage: CP2 = cartesian_product([J1,J3]) + sage: CP2.is_associative() + False + + Cartesian products of Cartesian products work:: + + sage: J1 = JordanSpinEJA(1) + sage: J2 = JordanSpinEJA(1) + sage: J3 = JordanSpinEJA(1) + sage: J = cartesian_product([J1,cartesian_product([J2,J3])]) + sage: J.multiplication_table() + +----++----+----+----+ + | * || b0 | b1 | b2 | + +====++====+====+====+ + | b0 || b0 | 0 | 0 | + +----++----+----+----+ + | b1 || 0 | b1 | 0 | + +----++----+----+----+ + | b2 || 0 | 0 | b2 | + +----++----+----+----+ + sage: HadamardEJA(3).multiplication_table() + +----++----+----+----+ + | * || b0 | b1 | b2 | + +====++====+====+====+ + | b0 || b0 | 0 | 0 | + +----++----+----+----+ + | b1 || 0 | b1 | 0 | + +----++----+----+----+ + | b2 || 0 | 0 | b2 | + +----++----+----+----+ + + TESTS: + + All factors must share the same base field:: + + sage: J1 = HadamardEJA(2, field=QQ) + sage: J2 = RealSymmetricEJA(2) + sage: CartesianProductEJA((J1,J2)) + Traceback (most recent call last): + ... + ValueError: all factors must share the same base field + + The cached unit element is the same one that would be computed:: + + sage: set_random_seed() # long time + sage: J1 = random_eja() # long time + sage: J2 = random_eja() # long time + sage: J = cartesian_product([J1,J2]) # long time + sage: actual = J.one() # long time + sage: J.one.clear_cache() # long time + sage: expected = J.one() # long time + sage: actual == expected # long time + True + + """ + Element = FiniteDimensionalEJAElement + + + def __init__(self, factors, **kwargs): + m = len(factors) + if m == 0: + return TrivialEJA() + + self._sets = factors + + field = factors[0].base_ring() + if not all( J.base_ring() == field for J in factors ): + raise ValueError("all factors must share the same base field") + + associative = all( f.is_associative() for f in factors ) + + MS = self.matrix_space() + basis = [] + zero = MS.zero() + for i in range(m): + for b in factors[i].matrix_basis(): + z = list(zero) + z[i] = b + basis.append(z) + + basis = tuple( MS(b) for b in basis ) + + # Define jordan/inner products that operate on that matrix_basis. + def jordan_product(x,y): + return MS(tuple( + (factors[i](x[i])*factors[i](y[i])).to_matrix() + for i in range(m) + )) + + def inner_product(x, y): + return sum( + factors[i](x[i]).inner_product(factors[i](y[i])) + for i in range(m) + ) + + # There's no need to check the field since it already came + # from an EJA. Likewise the axioms are guaranteed to be + # satisfied, unless the guy writing this class sucks. + # + # If you want the basis to be orthonormalized, orthonormalize + # the factors. + FiniteDimensionalEJA.__init__(self, + basis, + jordan_product, + inner_product, + field=field, + orthonormalize=False, + associative=associative, + cartesian_product=True, + check_field=False, + check_axioms=False) + + ones = tuple(J.one().to_matrix() for J in factors) + self.one.set_cache(self(ones)) + self.rank.set_cache(sum(J.rank() for J in factors)) + + def cartesian_factors(self): + # Copy/pasted from CombinatorialFreeModule_CartesianProduct. + return self._sets + + def cartesian_factor(self, i): + r""" + Return the ``i``th factor of this algebra. + """ + return self._sets[i] + + def _repr_(self): + # Copy/pasted from CombinatorialFreeModule_CartesianProduct. + from sage.categories.cartesian_product import cartesian_product + return cartesian_product.symbol.join("%s" % factor + for factor in self._sets) + + def matrix_space(self): + r""" + Return the space that our matrix basis lives in as a Cartesian + product. + + We don't simply use the ``cartesian_product()`` functor here + because it acts differently on SageMath MatrixSpaces and our + custom MatrixAlgebras, which are CombinatorialFreeModules. We + always want the result to be represented (and indexed) as + an ordered tuple. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA, + ....: HadamardEJA, + ....: OctonionHermitianEJA, + ....: RealSymmetricEJA) + + EXAMPLES:: + + sage: J1 = HadamardEJA(1) + sage: J2 = RealSymmetricEJA(2) + sage: J = cartesian_product([J1,J2]) + sage: J.matrix_space() + The Cartesian product of (Full MatrixSpace of 1 by 1 dense + matrices over Algebraic Real Field, Full MatrixSpace of 2 + by 2 dense matrices over Algebraic Real Field) + + :: + + sage: J1 = ComplexHermitianEJA(1) + sage: J2 = ComplexHermitianEJA(1) + sage: J = cartesian_product([J1,J2]) + sage: J.one().to_matrix()[0] + [1 0] + [0 1] + sage: J.one().to_matrix()[1] + [1 0] + [0 1] + + :: + + sage: J1 = OctonionHermitianEJA(1) + sage: J2 = OctonionHermitianEJA(1) + sage: J = cartesian_product([J1,J2]) + sage: J.one().to_matrix()[0] + +----+ + | e0 | + +----+ + sage: J.one().to_matrix()[1] + +----+ + | e0 | + +----+ + + """ + scalars = self.cartesian_factor(0).base_ring() + + # This category isn't perfect, but is good enough for what we + # need to do. + cat = MagmaticAlgebras(scalars).FiniteDimensional().WithBasis() + cat = cat.Unital().CartesianProducts() + factors = tuple( J.matrix_space() for J in self.cartesian_factors() ) + + from sage.sets.cartesian_product import CartesianProduct + return CartesianProduct(factors, cat) + + + @cached_method + def cartesian_projection(self, i): + r""" + SETUP:: + + sage: from mjo.eja.eja_algebra import (random_eja, + ....: JordanSpinEJA, + ....: HadamardEJA, + ....: RealSymmetricEJA, + ....: ComplexHermitianEJA) + + EXAMPLES: + + The projection morphisms are Euclidean Jordan algebra + operators:: + + sage: J1 = HadamardEJA(2) + sage: J2 = RealSymmetricEJA(2) + sage: J = cartesian_product([J1,J2]) + sage: J.cartesian_projection(0) + Linear operator between finite-dimensional Euclidean Jordan + algebras represented by the matrix: + [1 0 0 0 0] + [0 1 0 0 0] + Domain: Euclidean Jordan algebra of dimension 2 over Algebraic + Real Field (+) Euclidean Jordan algebra of dimension 3 over + Algebraic Real Field + Codomain: Euclidean Jordan algebra of dimension 2 over Algebraic + Real Field + sage: J.cartesian_projection(1) + Linear operator between finite-dimensional Euclidean Jordan + algebras represented by the matrix: + [0 0 1 0 0] + [0 0 0 1 0] + [0 0 0 0 1] + Domain: Euclidean Jordan algebra of dimension 2 over Algebraic + Real Field (+) Euclidean Jordan algebra of dimension 3 over + Algebraic Real Field + Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic + Real Field + + The projections work the way you'd expect on the vector + representation of an element:: + + sage: J1 = JordanSpinEJA(2) + sage: J2 = ComplexHermitianEJA(2) + sage: J = cartesian_product([J1,J2]) + sage: pi_left = J.cartesian_projection(0) + sage: pi_right = J.cartesian_projection(1) + sage: pi_left(J.one()).to_vector() + (1, 0) + sage: pi_right(J.one()).to_vector() + (1, 0, 0, 1) + sage: J.one().to_vector() + (1, 0, 1, 0, 0, 1) + + TESTS: + + The answer never changes:: + + sage: set_random_seed() + sage: J1 = random_eja() + sage: J2 = random_eja() + sage: J = cartesian_product([J1,J2]) + sage: P0 = J.cartesian_projection(0) + sage: P1 = J.cartesian_projection(0) + sage: P0 == P1 + True + + """ + offset = sum( self.cartesian_factor(k).dimension() + for k in range(i) ) + Ji = self.cartesian_factor(i) + Pi = self._module_morphism(lambda j: Ji.monomial(j - offset), + codomain=Ji) + + return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix()) + + @cached_method + def cartesian_embedding(self, i): + r""" + SETUP:: + + sage: from mjo.eja.eja_algebra import (random_eja, + ....: JordanSpinEJA, + ....: HadamardEJA, + ....: RealSymmetricEJA) + + EXAMPLES: + + The embedding morphisms are Euclidean Jordan algebra + operators:: + + sage: J1 = HadamardEJA(2) + sage: J2 = RealSymmetricEJA(2) + sage: J = cartesian_product([J1,J2]) + sage: J.cartesian_embedding(0) + Linear operator between finite-dimensional Euclidean Jordan + algebras represented by the matrix: + [1 0] + [0 1] + [0 0] + [0 0] + [0 0] + Domain: Euclidean Jordan algebra of dimension 2 over + Algebraic Real Field + Codomain: Euclidean Jordan algebra of dimension 2 over + Algebraic Real Field (+) Euclidean Jordan algebra of + dimension 3 over Algebraic Real Field + sage: J.cartesian_embedding(1) + Linear operator between finite-dimensional Euclidean Jordan + algebras represented by the matrix: + [0 0 0] + [0 0 0] + [1 0 0] + [0 1 0] + [0 0 1] + Domain: Euclidean Jordan algebra of dimension 3 over + Algebraic Real Field + Codomain: Euclidean Jordan algebra of dimension 2 over + Algebraic Real Field (+) Euclidean Jordan algebra of + dimension 3 over Algebraic Real Field + + The embeddings work the way you'd expect on the vector + representation of an element:: + + sage: J1 = JordanSpinEJA(3) + sage: J2 = RealSymmetricEJA(2) + sage: J = cartesian_product([J1,J2]) + sage: iota_left = J.cartesian_embedding(0) + sage: iota_right = J.cartesian_embedding(1) + sage: iota_left(J1.zero()) == J.zero() + True + sage: iota_right(J2.zero()) == J.zero() + True + sage: J1.one().to_vector() + (1, 0, 0) + sage: iota_left(J1.one()).to_vector() + (1, 0, 0, 0, 0, 0) + sage: J2.one().to_vector() + (1, 0, 1) + sage: iota_right(J2.one()).to_vector() + (0, 0, 0, 1, 0, 1) + sage: J.one().to_vector() + (1, 0, 0, 1, 0, 1) + + TESTS: + + The answer never changes:: + + sage: set_random_seed() + sage: J1 = random_eja() + sage: J2 = random_eja() + sage: J = cartesian_product([J1,J2]) + sage: E0 = J.cartesian_embedding(0) + sage: E1 = J.cartesian_embedding(0) + sage: E0 == E1 + True + + Composing a projection with the corresponding inclusion should + produce the identity map, and mismatching them should produce + the zero map:: + + sage: set_random_seed() + sage: J1 = random_eja() + sage: J2 = random_eja() + sage: J = cartesian_product([J1,J2]) + sage: iota_left = J.cartesian_embedding(0) + sage: iota_right = J.cartesian_embedding(1) + sage: pi_left = J.cartesian_projection(0) + sage: pi_right = J.cartesian_projection(1) + sage: pi_left*iota_left == J1.one().operator() + True + sage: pi_right*iota_right == J2.one().operator() + True + sage: (pi_left*iota_right).is_zero() + True + sage: (pi_right*iota_left).is_zero() + True + + """ + offset = sum( self.cartesian_factor(k).dimension() + for k in range(i) ) + Ji = self.cartesian_factor(i) + Ei = Ji._module_morphism(lambda j: self.monomial(j + offset), + codomain=self) + return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix()) + + + +FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA + +class RationalBasisCartesianProductEJA(CartesianProductEJA, + RationalBasisEJA): + r""" + A separate class for products of algebras for which we know a + rational basis. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (HadamardEJA, + ....: JordanSpinEJA, + ....: OctonionHermitianEJA, + ....: RealSymmetricEJA) + + EXAMPLES: + + This gives us fast characteristic polynomial computations in + product algebras, too:: + + + sage: J1 = JordanSpinEJA(2) + sage: J2 = RealSymmetricEJA(3) + sage: J = cartesian_product([J1,J2]) + sage: J.characteristic_polynomial_of().degree() + 5 + sage: J.rank() + 5 + + TESTS: + + The ``cartesian_product()`` function only uses the first factor to + decide where the result will live; thus we have to be careful to + check that all factors do indeed have a `_rational_algebra` member + before we try to access it:: + + sage: J1 = OctonionHermitianEJA(1) # no rational basis + sage: J2 = HadamardEJA(2) + sage: cartesian_product([J1,J2]) + Euclidean Jordan algebra of dimension 1 over Algebraic Real Field + (+) Euclidean Jordan algebra of dimension 2 over Algebraic Real Field + sage: cartesian_product([J2,J1]) + Euclidean Jordan algebra of dimension 2 over Algebraic Real Field + (+) Euclidean Jordan algebra of dimension 1 over Algebraic Real Field + + """ + def __init__(self, algebras, **kwargs): + CartesianProductEJA.__init__(self, algebras, **kwargs) + + self._rational_algebra = None + if self.vector_space().base_field() is not QQ: + if all( hasattr(r, "_rational_algebra") for r in algebras ): + self._rational_algebra = cartesian_product([ + r._rational_algebra for r in algebras + ]) + + +RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA + +def random_eja(*args, **kwargs): + J1 = ConcreteEJA.random_instance(*args, **kwargs) + + # This might make Cartesian products appear roughly as often as + # any other ConcreteEJA. + if ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1) == 0: + # Use random_eja() again so we can get more than two factors. + J2 = random_eja(*args, **kwargs) + J = cartesian_product([J1,J2]) + return J + else: + return J1