X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_algebra.py;h=0f2b655f21795cb1feb0e8b41cfc878261a67962;hb=c4203897950b84665ea41ed103f87f68aee0852e;hp=71cdd6f133623d49469569f70ef9504f8b1efd10;hpb=103fede29ce3213dab4a088ab8a7839470a9e341;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 71cdd6f..0f2b655 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -5,7 +5,7 @@ are used in optimization, and have some additional nice methods beyond what can be supported in a general Jordan Algebra. """ -from itertools import izip, repeat +from itertools import repeat from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra from sage.categories.magmatic_algebras import MagmaticAlgebras @@ -1032,7 +1032,7 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): basis = tuple( s.change_ring(field) for s in basis ) self._basis_normalizers = tuple( ~(self.natural_inner_product(s,s).sqrt()) for s in basis ) - basis = tuple(s*c for (s,c) in izip(basis,self._basis_normalizers)) + basis = tuple(s*c for (s,c) in zip(basis,self._basis_normalizers)) Qs = self.multiplication_table_from_matrix_basis(basis) @@ -1055,8 +1055,8 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): # with had entries in a nice field. return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coeff(i) else: - basis = ( (b/n) for (b,n) in izip(self.natural_basis(), - self._basis_normalizers) ) + basis = ( (b/n) for (b,n) in zip(self.natural_basis(), + self._basis_normalizers) ) # Do this over the rationals and convert back at the end. J = MatrixEuclideanJordanAlgebra(QQ, @@ -1066,7 +1066,7 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): (_,x,_,_) = J._charpoly_matrix_system() p = J._charpoly_coeff(i) # p might be missing some vars, have to substitute "optionally" - pairs = izip(x.base_ring().gens(), self._basis_normalizers) + pairs = zip(x.base_ring().gens(), self._basis_normalizers) substitutions = { v: v*c for (v,c) in pairs } result = p.subs(substitutions)