X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2FTODO;h=f415681182dd18bf401aba539a66f916e4f0c191;hb=7f55521ab4652d3ca10cd085f8e9d41bf149e8e5;hp=dd671c5fd7ab847a4c635748923bf0cba12a63ad;hpb=ba5ac5253ad25bf78e7655699d6d05630d91c1a5;p=sage.d.git diff --git a/mjo/eja/TODO b/mjo/eja/TODO index dd671c5..f415681 100644 --- a/mjo/eja/TODO +++ b/mjo/eja/TODO @@ -1,44 +1,38 @@ -Trace inner product tests: - - TESTS: - - The trace inner product is commutative:: - - sage: set_random_seed() - sage: J = random_eja() - sage: x = J.random_element(); y = J.random_element() - sage: x.trace_inner_product(y) == y.trace_inner_product(x) - True - - The trace inner product is bilinear:: - - sage: set_random_seed() - sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() - sage: z = J.random_element() - sage: a = QQ.random_element(); - sage: actual = (a*(x+z)).trace_inner_product(y) - sage: expected = a*x.trace_inner_product(y) + a*z.trace_inner_product(y) - sage: actual == expected - True - sage: actual = x.trace_inner_product(a*(y+z)) - sage: expected = a*x.trace_inner_product(y) + a*x.trace_inner_product(z) - sage: actual == expected - True - - The trace inner product is associative:: - - sage: pass - - The trace inner product satisfies the compatibility - condition in the definition of a Euclidean Jordan algebra: - - sage: set_random_seed() - sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() - sage: z = J.random_element() - sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z) - True - \ No newline at end of file +1. Add references and start citing them. + +2. Pre-cache charpoly for some small algebras? + +RealSymmetricEJA(4): + +sage: F = J.base_ring() +sage: a0 = (1/4)*X[4]**2*X[6]**2 - (1/2)*X[2]*X[5]*X[6]**2 - (1/2)*X[3]*X[4]*X[6]*X[7] + (F(2).sqrt()/2)*X[1]*X[5]*X[6]*X[7] + (1/4)*X[3]**2*X[7]**2 - (1/2)*X[0]*X[5]*X[7]**2 + (F(2).sqrt()/2)*X[2]*X[3]*X[6]*X[8] - (1/2)*X[1]*X[4]*X[6*X[8] - (1/2)*X[1]*X[3]*X[7]*X[8] + (F(2).sqrt()/2)*X[0]*X[4]*X[7]*X[8] + (1/4)*X[1]**2*X[8]**2 - (1/2)*X[0]*X[2]*X[8]**2 - (1/2)*X[2]*X[3]**2*X[9] + (F(2).sqrt()/2)*X[1]*X[3]*X[4]*X[9] - (1/2)*X[0]*X[4]**2*X[9] - (1/2)*X[1]**2*X[5]*X[9] + X[0]*X[2]*X[5]*X[9] + +3. Profile the construction of "large" matrix algebras (like the + 15-dimensional QuaternionHermitianAlgebra(3)) to find out why + they're so slow. + +4. Instead of storing a basis multiplication matrix, just make + product_on_basis() a cached method and manually cache its + entries. The cython cached method lookup should be faster than a + python-based matrix lookup anyway. NOTE: we should still be able + to recompute the table somehow. Is this worth it? + +5. What the ever-loving fuck is this shit? + + sage: O = Octonions(QQ) + sage: e0 = O.monomial(0) + sage: e0*[[[[]]]] + [[[[]]]]*e0 + +6. In fact, could my octonion matrix algebra be generalized for any + algebra of matrices over the reals whose entries are not real? Then + we wouldn't need real embeddings at all. They might even be fricking + vector spaces if I did that... + +7. Every once in a long while, the test + + sage: set_random_seed() + sage: x = random_eja().random_element() + sage: x.is_invertible() == (x.det() != 0) + + in eja_element.py returns False.