X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2FTODO;h=ed15aa3dd5443c18195d9548c44e4a208a601dd7;hb=b44ddab3076cc3b01c95bf6eb3b5f7b20dfd7913;hp=e02257f2b02776f7c19c0ebb54826ffaa82db364;hpb=309fc28265693c9abd51780ea76f8beec39ce27f;p=sage.d.git diff --git a/mjo/eja/TODO b/mjo/eja/TODO index e02257f..ed15aa3 100644 --- a/mjo/eja/TODO +++ b/mjo/eja/TODO @@ -1,12 +1,49 @@ -0. Add tests for orthogonality in the Peirce decomposition. - 1. Add CartesianProductEJA. -2. Check the axioms in the constructor when check != False? +2. Add references and start citing them. + +3. Implement the octonion simple EJA. + +4. Override random_instance(), one(), et cetera in DirectSumEJA. + +5. Switch to QQ in *all* algebras for _charpoly_coefficients(). + This only works when we know that the basis can be rationalized... + which is the case at least for the concrete EJAs we provide, + but not in general. + +6. Pass already_echelonized (default: False) and echelon_basis + (default: None) into the subalgebra constructor. The value of + already_echelonized can be passed to V.span_of_basis() to save + some time, and using e.g. FreeModule_submodule_with_basis_field + we may somehow be able to pass the echelon basis straight in to + save time. + + This may require supporting "basis" as a list of basis vectors + (as opposed to superalgebra elements) in the subalgebra constructor. + +7. The inner product should be an *argument* to the main EJA + constructor. Afterwards, the basis normalization step should be + optional (and enabled by default) for ALL algebras, since any + algebra can have a nonstandard inner-product and its basis can be + normalized with respect to that inner- product. For example, the + HadamardEJA could be equipped with an inner- product that is twice + the usual one. Then for the basis to be orthonormal, we would need + to divide e.g. (1,0,0) by <(1,0,0),(1,0,0)> = 2 to normalize it. + +8. Pre-cache charpoly for some small algebras? + +RealSymmetricEJA(4): + +sage: F = J.base_ring() +sage: a0 = (1/4)*X[4]**2*X[6]**2 - (1/2)*X[2]*X[5]*X[6]**2 - (1/2)*X[3]*X[4]*X[6]*X[7] + (F(2).sqrt()/2)*X[1]*X[5]*X[6]*X[7] + (1/4)*X[3]**2*X[7]**2 - (1/2)*X[0]*X[5]*X[7]**2 + (F(2).sqrt()/2)*X[2]*X[3]*X[6]*X[8] - (1/2)*X[1]*X[4]*X[6*X[8] - (1/2)*X[1]*X[3]*X[7]*X[8] + (F(2).sqrt()/2)*X[0]*X[4]*X[7]*X[8] + (1/4)*X[1]**2*X[8]**2 - (1/2)*X[0]*X[2]*X[8]**2 - (1/2)*X[2]*X[3]**2*X[9] + (F(2).sqrt()/2)*X[1]*X[3]*X[4]*X[9] - (1/2)*X[0]*X[4]**2*X[9] - (1/2)*X[1]**2*X[5]*X[9] + X[0]*X[2]*X[5]*X[9] + +9. Compute the scalar in the general natural_inner_product() for + matrices, so no overrides are necessary. -3. Add references and start citing them. +10. The main EJA element constructor is happy to convert between + e.g. HadamardEJA(3) and JordanSpinEJA(3). -4. Implement the octonion simple EJA. +11. Figure out if CombinatorialFreeModule's use of IndexedGenerators + can be used to replace the matrix_basis(). -5. Factor out the unit-norm basis (and operator symmetry) tests once - all of the algebras pass. +12. Move the "field" argument to a keyword after basis, jp, and ip.