X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2FTODO;h=93aa9fb42e6ec6cdba6963db8dacfddd116ba762;hb=21fa036e86711c6c28b6d89af2b1bfe4ceb24b29;hp=ccd0b5ae507312c68d7a5e61d5094cfab617b7c5;hpb=162d7eaa821faa07e7886d8e21308b716aabd747;p=sage.d.git diff --git a/mjo/eja/TODO b/mjo/eja/TODO index ccd0b5a..93aa9fb 100644 --- a/mjo/eja/TODO +++ b/mjo/eja/TODO @@ -1,8 +1,7 @@ -1. Finish DirectSumEJA: add to_matrix(), random_instance(), - one()... methods. Make it subclass RationalBasisEuclideanJordanAlgebra. - This is not a general direct sum / cartesian product implementation, - it's used only with the other rationalbasis algebras (to make non- - simple EJAs out of the simple ones). +1. Finish CartesianProductEJA: add to_matrix(), random_instance(),... + methods. I guess we should create a separate class hierarchy for + Cartesian products of RationalBasisEJA? That way we get fast + charpoly and random_instance() defined... 2. Add references and start citing them. @@ -15,13 +14,9 @@ RealSymmetricEJA(4): sage: F = J.base_ring() sage: a0 = (1/4)*X[4]**2*X[6]**2 - (1/2)*X[2]*X[5]*X[6]**2 - (1/2)*X[3]*X[4]*X[6]*X[7] + (F(2).sqrt()/2)*X[1]*X[5]*X[6]*X[7] + (1/4)*X[3]**2*X[7]**2 - (1/2)*X[0]*X[5]*X[7]**2 + (F(2).sqrt()/2)*X[2]*X[3]*X[6]*X[8] - (1/2)*X[1]*X[4]*X[6*X[8] - (1/2)*X[1]*X[3]*X[7]*X[8] + (F(2).sqrt()/2)*X[0]*X[4]*X[7]*X[8] + (1/4)*X[1]**2*X[8]**2 - (1/2)*X[0]*X[2]*X[8]**2 - (1/2)*X[2]*X[3]**2*X[9] + (F(2).sqrt()/2)*X[1]*X[3]*X[4]*X[9] - (1/2)*X[0]*X[4]**2*X[9] - (1/2)*X[1]**2*X[5]*X[9] + X[0]*X[2]*X[5]*X[9] -5. Compute the scalar in the general natural_inner_product() for - matrices, so no overrides are necessary. - -6. The main EJA element constructor is happy to convert between +5. The main EJA element constructor is happy to convert between e.g. HadamardEJA(3) and JordanSpinEJA(3). -7. Figure out if CombinatorialFreeModule's use of IndexedGenerators - can be used to replace the matrix_basis(). - -8. Move the "field" argument to a keyword after basis, jp, and ip. +6. Profile the construction of "large" matrix algebras (like the + 15-dimensional QuaternionHermitianAlgebra(3)) to find out why + they're so slow.