X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2FTODO;h=93aa9fb42e6ec6cdba6963db8dacfddd116ba762;hb=21fa036e86711c6c28b6d89af2b1bfe4ceb24b29;hp=b8ceda8fa3defcb3df1a5641ab03eed28c910ee9;hpb=0ed6dd869beb5fecd91e3653243e9c899b12c36b;p=sage.d.git diff --git a/mjo/eja/TODO b/mjo/eja/TODO index b8ceda8..93aa9fb 100644 --- a/mjo/eja/TODO +++ b/mjo/eja/TODO @@ -1,19 +1,22 @@ -A. Add tests for orthogonality in the Peirce decomposition. +1. Finish CartesianProductEJA: add to_matrix(), random_instance(),... + methods. I guess we should create a separate class hierarchy for + Cartesian products of RationalBasisEJA? That way we get fast + charpoly and random_instance() defined... -B. Add support for a symmetric positive-definite bilinear form in - the JordanSpinEJA. +2. Add references and start citing them. -1. Add CartesianProductEJA. +3. Implement the octonion simple EJA. -2. Check the axioms in the constructor when check != False? +4. Pre-cache charpoly for some small algebras? -3. Add references and start citing them. +RealSymmetricEJA(4): -4. Implement the octonion simple EJA. +sage: F = J.base_ring() +sage: a0 = (1/4)*X[4]**2*X[6]**2 - (1/2)*X[2]*X[5]*X[6]**2 - (1/2)*X[3]*X[4]*X[6]*X[7] + (F(2).sqrt()/2)*X[1]*X[5]*X[6]*X[7] + (1/4)*X[3]**2*X[7]**2 - (1/2)*X[0]*X[5]*X[7]**2 + (F(2).sqrt()/2)*X[2]*X[3]*X[6]*X[8] - (1/2)*X[1]*X[4]*X[6*X[8] - (1/2)*X[1]*X[3]*X[7]*X[8] + (F(2).sqrt()/2)*X[0]*X[4]*X[7]*X[8] + (1/4)*X[1]**2*X[8]**2 - (1/2)*X[0]*X[2]*X[8]**2 - (1/2)*X[2]*X[3]**2*X[9] + (F(2).sqrt()/2)*X[1]*X[3]*X[4]*X[9] - (1/2)*X[0]*X[4]**2*X[9] - (1/2)*X[1]**2*X[5]*X[9] + X[0]*X[2]*X[5]*X[9] -5. Factor out the unit-norm basis (and operator symmetry) tests once - all of the algebras pass. +5. The main EJA element constructor is happy to convert between + e.g. HadamardEJA(3) and JordanSpinEJA(3). -6. Can we make the minimal and characteristic polynomial tests work - for trivial algebras, too? Then we wouldn't need the "nontrivial" - argument to random_eja(). +6. Profile the construction of "large" matrix algebras (like the + 15-dimensional QuaternionHermitianAlgebra(3)) to find out why + they're so slow.