X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2FTODO;h=90a49d3a120d4914c8b0664f2d2405f6a5b8b8ab;hb=c3b925473fca353cc16b13ab24de6664821ac305;hp=b2495b59f3264e5d638a59f6630daa77214cdb50;hpb=49f266e16de87af712beb680570ff39e2ae87de4;p=sage.d.git diff --git a/mjo/eja/TODO b/mjo/eja/TODO index b2495b5..90a49d3 100644 --- a/mjo/eja/TODO +++ b/mjo/eja/TODO @@ -1,19 +1,16 @@ -1. Add CartesianProductEJA. +1. Add cartesian products to random_eja(). -2. Check the axioms in the constructor when check != False? +2. Add references and start citing them. -3. Add references and start citing them. +3. Implement the octonion simple EJA. -4. Implement the octonion simple EJA. +4. Pre-cache charpoly for some small algebras? -5. Factor out the unit-norm basis (and operator symmetry) tests once - all of the algebras pass. +RealSymmetricEJA(4): -6. Implement spectral projector decomposition for EJA operators - using jordan_form() or eigenmatrix_right(). I suppose we can - ignore the problem of base rings for now and just let it crash - if we're not using AA as our base field. +sage: F = J.base_ring() +sage: a0 = (1/4)*X[4]**2*X[6]**2 - (1/2)*X[2]*X[5]*X[6]**2 - (1/2)*X[3]*X[4]*X[6]*X[7] + (F(2).sqrt()/2)*X[1]*X[5]*X[6]*X[7] + (1/4)*X[3]**2*X[7]**2 - (1/2)*X[0]*X[5]*X[7]**2 + (F(2).sqrt()/2)*X[2]*X[3]*X[6]*X[8] - (1/2)*X[1]*X[4]*X[6*X[8] - (1/2)*X[1]*X[3]*X[7]*X[8] + (F(2).sqrt()/2)*X[0]*X[4]*X[7]*X[8] + (1/4)*X[1]**2*X[8]**2 - (1/2)*X[0]*X[2]*X[8]**2 - (1/2)*X[2]*X[3]**2*X[9] + (F(2).sqrt()/2)*X[1]*X[3]*X[4]*X[9] - (1/2)*X[0]*X[4]**2*X[9] - (1/2)*X[1]**2*X[5]*X[9] + X[0]*X[2]*X[5]*X[9] -7. Do we really need to orthonormalize the basis in a subalgebra? - So long as we can decompose the operator (which is invariant - under changes of basis), who cares? +5. Profile the construction of "large" matrix algebras (like the + 15-dimensional QuaternionHermitianAlgebra(3)) to find out why + they're so slow.