X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2FTODO;h=529f70fd633bf36275c63282a05614f1109a7df0;hb=d9b0659df5d8ad61f457674e009180618dffef67;hp=51c2a33b542569c431d986a0d165d8774b0d49eb;hpb=42e532c7a3cf00e2d6ce1e70d05435bf0d30010c;p=sage.d.git diff --git a/mjo/eja/TODO b/mjo/eja/TODO index 51c2a33..529f70f 100644 --- a/mjo/eja/TODO +++ b/mjo/eja/TODO @@ -1,21 +1,25 @@ -1. Add CartesianProductEJA. +1. Add references and start citing them. -2. Check the axioms in the constructor when check != False? +2. Profile (and fix?) any remaining slow operations. -3. Add references and start citing them. +3. Every once in a long while, the test -4. Implement the octonion simple EJA. + sage: set_random_seed() + sage: x = random_eja().random_element() + sage: x.is_invertible() == (x.det() != 0) -5. Factor out the unit-norm basis (and operator symmetry) tests once - all of the algebras pass. + in eja_element.py returns False. Example: -6. Implement spectral projector decomposition for EJA operators - using jordan_form() or eigenmatrix_right(). I suppose we can - ignore the problem of base rings for now and just let it crash - if we're not using AA as our base field. + sage: J1 = ComplexHermitianEJA(2) + sage: J2 = TrivialEJA() + sage: J = cartesian_product([J1,J2]) + sage: x = J.from_vector(vector(QQ, [-1, -1/2, -1/2, -1/2])) + sage: x.is_invertible() + True + sage: x.det() + 0 -7. Do we really need to orthonormalize the basis in a subalgebra? - So long as we can decompose the operator (which is invariant - under changes of basis), who cares? - -8. Check that our field is a subring of RLF. +4. When we take a Cartesian product involving a trivial algebra, we + could easily cache the identity and charpoly coefficients using + the nontrivial factor. On the other hand, it's nice that we can + test out some alternate code paths...