X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2FTODO;h=08b8e81b22e8b5fde0a368e11840267edab4d250;hb=9d365c6cf3b52024817cd2e97b1061216094e3df;hp=dd671c5fd7ab847a4c635748923bf0cba12a63ad;hpb=ba5ac5253ad25bf78e7655699d6d05630d91c1a5;p=sage.d.git diff --git a/mjo/eja/TODO b/mjo/eja/TODO index dd671c5..08b8e81 100644 --- a/mjo/eja/TODO +++ b/mjo/eja/TODO @@ -1,44 +1,28 @@ -Trace inner product tests: - - TESTS: - - The trace inner product is commutative:: - - sage: set_random_seed() - sage: J = random_eja() - sage: x = J.random_element(); y = J.random_element() - sage: x.trace_inner_product(y) == y.trace_inner_product(x) - True - - The trace inner product is bilinear:: - - sage: set_random_seed() - sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() - sage: z = J.random_element() - sage: a = QQ.random_element(); - sage: actual = (a*(x+z)).trace_inner_product(y) - sage: expected = a*x.trace_inner_product(y) + a*z.trace_inner_product(y) - sage: actual == expected - True - sage: actual = x.trace_inner_product(a*(y+z)) - sage: expected = a*x.trace_inner_product(y) + a*x.trace_inner_product(z) - sage: actual == expected - True - - The trace inner product is associative:: - - sage: pass - - The trace inner product satisfies the compatibility - condition in the definition of a Euclidean Jordan algebra: - - sage: set_random_seed() - sage: J = random_eja() - sage: x = J.random_element() - sage: y = J.random_element() - sage: z = J.random_element() - sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z) - True - \ No newline at end of file +1. Finish DirectSumEJA: add to_matrix(), random_instance(), + one()... methods. Make it subclass RationalBasisEuclideanJordanAlgebra. + This is not a general direct sum / cartesian product implementation, + it's used only with the other rationalbasis algebras (to make non- + simple EJAs out of the simple ones). + +2. Add references and start citing them. + +3. Implement the octonion simple EJA. + +4. Pre-cache charpoly for some small algebras? + +RealSymmetricEJA(4): + +sage: F = J.base_ring() +sage: a0 = (1/4)*X[4]**2*X[6]**2 - (1/2)*X[2]*X[5]*X[6]**2 - (1/2)*X[3]*X[4]*X[6]*X[7] + (F(2).sqrt()/2)*X[1]*X[5]*X[6]*X[7] + (1/4)*X[3]**2*X[7]**2 - (1/2)*X[0]*X[5]*X[7]**2 + (F(2).sqrt()/2)*X[2]*X[3]*X[6]*X[8] - (1/2)*X[1]*X[4]*X[6*X[8] - (1/2)*X[1]*X[3]*X[7]*X[8] + (F(2).sqrt()/2)*X[0]*X[4]*X[7]*X[8] + (1/4)*X[1]**2*X[8]**2 - (1/2)*X[0]*X[2]*X[8]**2 - (1/2)*X[2]*X[3]**2*X[9] + (F(2).sqrt()/2)*X[1]*X[3]*X[4]*X[9] - (1/2)*X[0]*X[4]**2*X[9] - (1/2)*X[1]**2*X[5]*X[9] + X[0]*X[2]*X[5]*X[9] + +5. Compute the scalar in the general natural_inner_product() for + matrices, so no overrides are necessary. + +6. The main EJA element constructor is happy to convert between + e.g. HadamardEJA(3) and JordanSpinEJA(3). + +7. Figure out if CombinatorialFreeModule's use of IndexedGenerators + can be used to replace the matrix_basis(). + +9. Add back the check_field=False and check_axioms=False parameters + for the EJAs we've constructed ourselves.