X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Fcone%2Ftests.py;h=5a910f0e255e4feefd485fdc5514f28576b1e8ee;hb=fdc03da648dd989527ff4c12ccce04c990869e3b;hp=1758f8b4749a171165ea574aa87a7389019779bc;hpb=dbef443b13d185940629eb870fc93f55cb5a70a3;p=sage.d.git diff --git a/mjo/cone/tests.py b/mjo/cone/tests.py index 1758f8b..5a910f0 100644 --- a/mjo/cone/tests.py +++ b/mjo/cone/tests.py @@ -15,54 +15,346 @@ from sage.all import * # The double-import is needed to get the underscore methods. from mjo.cone.cone import * -from mjo.cone.cone import _basically_the_same, _restrict_to_space + + +def _restrict_to_subspace(K, W): + r""" + Restrict ``K`` (up to linear isomorphism) to a vector subspace. + + This operation not only restricts the cone to a subspace of its + ambient space, but also represents the rays of the cone in a new + (smaller) lattice corresponding to the subspace. The resulting + cone will be linearly isomorphic (but not equal) to the + desired restriction, since it has likely undergone a change of + basis. + + To explain the difficulty, consider the cone ``K = + Cone([(1,1,1)])`` having a single ray. The span of ``K`` is a + one-dimensional subspace containing ``K``, yet we have no way to + perform operations like "dual of" in the subspace. To represent + ``K`` in the space ``K.span()``, we must perform a change of basis + and write its sole ray as ``(1,0,0)``. Now the restricted + ``Cone([(1,)])`` is linearly isomorphic (but of course not equal) to + ``K`` interpreted as living in ``K.span()``. + + INPUT: + + - ``K`` -- The cone to restrict. + + - ``W`` -- The subspace into which ``K`` will be restricted. + + OUTPUT: + + A new cone in a sublattice corresponding to ``W``. + + REFERENCES: + + M. Orlitzky. The Lyapunov rank of an improper cone. + http://www.optimization-online.org/DB_HTML/2015/10/5135.html + + EXAMPLES: + + Restricting a solid cone to its own span returns a cone linearly + isomorphic to the original:: + + sage: K = Cone([(1,2,3),(-1,1,0),(9,0,-2)]) + sage: K.is_solid() + True + sage: _restrict_to_subspace(K, K.span()).rays() + N(-1, 1, 0), + N( 1, 0, 0), + N( 9, -6, -1) + in 3-d lattice N + + A single ray restricted to its own span has the same + representation regardless of the ambient space:: + + sage: K = Cone([(1,0)]) + sage: K_S = _restrict_to_subspace(K, K.span()).rays() + sage: K_S + N(1) + in 1-d lattice N + sage: K = Cone([(1,1,1)]) + sage: K_S = _restrict_to_subspace(K, K.span()).rays() + sage: K_S + N(1) + in 1-d lattice N + + Restricting to a trivial space gives the trivial cone:: + + sage: K = Cone([(8,3,-1,0),(9,2,2,0),(-4,6,7,0)]) + sage: trivial_space = K.lattice().vector_space().span([]) + sage: _restrict_to_subspace(K, trivial_space) + 0-d cone in 0-d lattice N + + TESTS: + + Restricting a cone to its own span results in a solid cone:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim = 8) + sage: K_S = _restrict_to_subspace(K, K.span()) + sage: K_S.is_solid() + True + + Restricting a cone to its span should not affect the number of + rays in the cone:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim = 8) + sage: K_S = _restrict_to_subspace(K, K.span()) + sage: K.nrays() == K_S.nrays() + True + + Restricting a cone to its span should not affect its dimension:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim = 8) + sage: K_S = _restrict_to_subspace(K, K.span()) + sage: K.dim() == K_S.dim() + True + + Restricting a cone to its span should not affects its lineality:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim = 8) + sage: K_S = _restrict_to_subspace(K, K.span()) + sage: K.lineality() == K_S.lineality() + True + + Restricting a cone to its span should not affect the number of + facets it has:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim = 8) + sage: K_S = _restrict_to_subspace(K, K.span()) + sage: len(K.facets()) == len(K_S.facets()) + True + + Restricting a solid cone to its span is a linear isomorphism + and should not affect the dimension of its ambient space:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim = 8, solid = True) + sage: K_S = _restrict_to_subspace(K, K.span()) + sage: K.lattice_dim() == K_S.lattice_dim() + True + + Restricting a solid cone to its span is a linear isomorphism + that establishes a one-to-one correspondence of discrete + complementarity sets:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim = 8, solid = True) + sage: K_S = _restrict_to_subspace(K, K.span()) + sage: dcs1 = K.discrete_complementarity_set() + sage: dcs2 = K_S.discrete_complementarity_set() + sage: len(dcs1) == len(dcs2) + True + + Restricting a solid cone to its span is a linear isomorphism + under which Lyapunov rank (the length of a Lyapunov-like basis) + is invariant:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim = 8, solid = True) + sage: K_S = _restrict_to_subspace(K, K.span()) + sage: LL1 = K.lyapunov_like_basis() + sage: LL2 = K_S.lyapunov_like_basis() + sage: len(LL1) == len(LL2) + True + + If we restrict a cone to a subspace of its span, the resulting + cone should have the same dimension as the subspace:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim = 8) + sage: W_basis = random_sublist(K.rays(), 0.5) + sage: W = K.lattice().vector_space().span(W_basis) + sage: K_W = _restrict_to_subspace(K,W) + sage: K_W.lattice_dim() == W.dimension() + True + + Through a series of restrictions, any closed convex cone can be + reduced to a cartesian product with a proper factor [Orlitzky]_:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim = 8) + sage: K_S = _restrict_to_subspace(K, K.span()) + sage: P = K_S.dual().span() + sage: K_SP = _restrict_to_subspace(K_S, P) + sage: K_SP.is_proper() + True + """ + # We want to intersect this cone with ``W``. We can do that via + # cone intersection, so we first turn the space ``W`` into a cone. + W_rays = W.basis() + [ -b for b in W.basis() ] + W_cone = Cone(W_rays, lattice=K.lattice()) + K = K.intersection(W_cone) + + # Now every generator of ``K`` should belong to ``W``. + K_W_rays = [ W.coordinate_vector(r) for r in K.rays() ] + + L = ToricLattice(W.dimension()) + return Cone(K_W_rays, lattice=L) + + # -# Tests for _restrict_to_space. +# Tests for _restrict_to_subspace. # +def _look_isomorphic(K1, K2): + r""" + Test whether or not ``K1`` and ``K2`` look linearly isomorphic. + + This is a hack to get around the fact that it's difficult to tell + when two cones are linearly isomorphic. Instead, we check a list of + properties that should be preserved under linear isomorphism. + + OUTPUT: + + ``True`` if ``K1`` and ``K2`` look isomorphic, or ``False`` + if we can prove that they are not isomorphic. + + EXAMPLES: + + Any proper cone with three generators in `\mathbb{R}^{3}` is + isomorphic to the nonnegative orthant:: + + sage: K1 = Cone([(1,0,0), (0,1,0), (0,0,1)]) + sage: K2 = Cone([(1,2,3), (3, 18, 4), (66, 51, 0)]) + sage: _look_isomorphic(K1, K2) + True + + Negating a cone gives you an isomorphic cone:: + + sage: K = Cone([(0,2,-5), (-6, 2, 4), (0, 51, 0)]) + sage: _look_isomorphic(K, -K) + True + + TESTS: + + Any cone is isomorphic to itself:: + + sage: K = random_cone(max_ambient_dim = 8) + sage: _look_isomorphic(K, K) + True + + After applying an invertible matrix to the rows of a cone, the + result should is isomorphic to the cone we started with:: + + sage: K1 = random_cone(max_ambient_dim = 8) + sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular') + sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice()) + sage: _look_isomorphic(K1, K2) + True + + """ + if K1.lattice_dim() != K2.lattice_dim(): + return False + + if K1.nrays() != K2.nrays(): + return False + + if K1.dim() != K2.dim(): + return False + + if K1.lineality() != K2.lineality(): + return False + + if K1.is_solid() != K2.is_solid(): + return False + + if K1.is_strictly_convex() != K2.is_strictly_convex(): + return False + + if len(K1.lyapunov_like_basis()) != len(K2.lyapunov_like_basis()): + return False + + C_of_K1 = K1.discrete_complementarity_set() + C_of_K2 = K2.discrete_complementarity_set() + if len(C_of_K1) != len(C_of_K2): + return False + + if len(K1.facets()) != len(K2.facets()): + return False + + return True + + """ -Apply _restrict_to_space according to our paper (to obtain our main +Apply _restrict_to_subspace according to our paper (to obtain our main result). Test all four parameter combinations:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8, ....: strictly_convex=False, ....: solid=False) - sage: K_S = _restrict_to_space(K, K.span()) - sage: K_SP = _restrict_to_space(K_S.dual(), K_S.dual().span()).dual() + sage: K_S = _restrict_to_subspace(K, K.span()) + sage: K_S2 = K.solid_restriction() + sage: _look_isomorphic(K_S, K_S2) + True + sage: K_SP = _restrict_to_subspace(K_S.dual(), K_S.dual().span()).dual() + sage: K_SP2 = K_S.strict_quotient() sage: K_SP.is_proper() True - sage: K_SP = _restrict_to_space(K_S, K_S.dual().span()) + sage: K_SP2.is_proper() + True + sage: _look_isomorphic(K_SP, K_SP2) + True + sage: K_SP = _restrict_to_subspace(K_S, K_S.dual().span()) sage: K_SP.is_proper() True + sage: _look_isomorphic(K_SP, K_SP2) + True :: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8, - ....: strictly_convex=True, - ....: solid=False) - sage: K_S = _restrict_to_space(K, K.span()) - sage: K_SP = _restrict_to_space(K_S.dual(), K_S.dual().span()).dual() + ....: strictly_convex=False, + ....: solid=True) + sage: K_S = _restrict_to_subspace(K, K.span()) + sage: K_S2 = K.solid_restriction() + sage: _look_isomorphic(K_S, K_S2) + True + sage: K_SP = _restrict_to_subspace(K_S.dual(), K_S.dual().span()).dual() + sage: K_SP2 = K_S.strict_quotient() sage: K_SP.is_proper() True - sage: K_SP = _restrict_to_space(K_S, K_S.dual().span()) + sage: K_SP2.is_proper() + True + sage: _look_isomorphic(K_SP, K_SP2) + True + sage: K_SP = _restrict_to_subspace(K_S, K_S.dual().span()) sage: K_SP.is_proper() True + sage: _look_isomorphic(K_SP, K_SP2) + True :: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8, - ....: strictly_convex=False, - ....: solid=True) - sage: K_S = _restrict_to_space(K, K.span()) - sage: K_SP = _restrict_to_space(K_S.dual(), K_S.dual().span()).dual() + ....: strictly_convex=True, + ....: solid=False) + sage: K_S = _restrict_to_subspace(K, K.span()) + sage: K_S2 = K.solid_restriction() + sage: _look_isomorphic(K_S, K_S2) + True + sage: K_SP = _restrict_to_subspace(K_S.dual(), K_S.dual().span()).dual() + sage: K_SP2 = K_S.strict_quotient() sage: K_SP.is_proper() True - sage: K_SP = _restrict_to_space(K_S, K_S.dual().span()) + sage: K_SP2.is_proper() + True + sage: _look_isomorphic(K_SP, K_SP2) + True + sage: K_SP = _restrict_to_subspace(K_S, K_S.dual().span()) sage: K_SP.is_proper() True + sage: _look_isomorphic(K_SP, K_SP2) + True :: @@ -70,28 +362,37 @@ result). Test all four parameter combinations:: sage: K = random_cone(max_ambient_dim = 8, ....: strictly_convex=True, ....: solid=True) - sage: K_S = _restrict_to_space(K, K.span()) - sage: K_SP = _restrict_to_space(K_S.dual(), K_S.dual().span()).dual() + sage: K_S = _restrict_to_subspace(K, K.span()) + sage: K_S2 = K.solid_restriction() + sage: _look_isomorphic(K_S, K_S2) + True + sage: K_SP = _restrict_to_subspace(K_S.dual(), K_S.dual().span()).dual() + sage: K_SP2 = K_S.strict_quotient() sage: K_SP.is_proper() True - sage: K_SP = _restrict_to_space(K_S, K_S.dual().span()) + sage: K_SP2.is_proper() + True + sage: _look_isomorphic(K_SP, K_SP2) + True + sage: K_SP = _restrict_to_subspace(K_S, K_S.dual().span()) sage: K_SP.is_proper() True + sage: _look_isomorphic(K_SP, K_SP2) + True Test the proposition in our paper concerning the duals and restrictions. Generate a random cone, then create a subcone of it. The operation of dual-taking should then commute with rho. Test all parameter combinations:: - sage: set_random_seed() sage: J = random_cone(max_ambient_dim = 8, ....: solid=False, ....: strictly_convex=False) sage: K = Cone(random_sublist(J.rays(), 0.5), lattice=J.lattice()) - sage: K_W_star = _restrict_to_space(K, J.span()).dual() - sage: K_star_W = _restrict_to_space(K.dual(), J.span()) - sage: _basically_the_same(K_W_star, K_star_W) + sage: K_W_star = _restrict_to_subspace(K, J.span()).dual() + sage: K_star_W = _restrict_to_subspace(K.dual(), J.span()) + sage: _look_isomorphic(K_W_star, K_star_W) True :: @@ -101,9 +402,9 @@ all parameter combinations:: ....: solid=True, ....: strictly_convex=False) sage: K = Cone(random_sublist(J.rays(), 0.5), lattice=J.lattice()) - sage: K_W_star = _restrict_to_space(K, J.span()).dual() - sage: K_star_W = _restrict_to_space(K.dual(), J.span()) - sage: _basically_the_same(K_W_star, K_star_W) + sage: K_W_star = _restrict_to_subspace(K, J.span()).dual() + sage: K_star_W = _restrict_to_subspace(K.dual(), J.span()) + sage: _look_isomorphic(K_W_star, K_star_W) True :: @@ -113,9 +414,9 @@ all parameter combinations:: ....: solid=False, ....: strictly_convex=True) sage: K = Cone(random_sublist(J.rays(), 0.5), lattice=J.lattice()) - sage: K_W_star = _restrict_to_space(K, J.span()).dual() - sage: K_star_W = _restrict_to_space(K.dual(), J.span()) - sage: _basically_the_same(K_W_star, K_star_W) + sage: K_W_star = _restrict_to_subspace(K, J.span()).dual() + sage: K_star_W = _restrict_to_subspace(K.dual(), J.span()) + sage: _look_isomorphic(K_W_star, K_star_W) True :: @@ -125,11 +426,30 @@ all parameter combinations:: ....: solid=True, ....: strictly_convex=True) sage: K = Cone(random_sublist(J.rays(), 0.5), lattice=J.lattice()) - sage: K_W_star = _restrict_to_space(K, J.span()).dual() - sage: K_star_W = _restrict_to_space(K.dual(), J.span()) - sage: _basically_the_same(K_W_star, K_star_W) + sage: K_W_star = _restrict_to_subspace(K, J.span()).dual() + sage: K_star_W = _restrict_to_subspace(K.dual(), J.span()) + sage: _look_isomorphic(K_W_star, K_star_W) True +Ensure that ``__restrict_to_subspace(K, K.span())`` and +``K.solid_restriction()`` are actually equivalent:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=8) + sage: K1 = _restrict_to_subspace(K, K.span()) + sage: K2 = K.solid_restriction() + sage: _look_isomorphic(K1,K2) + True + +Ensure that ``K.__restrict_to_subspace(K,K.dual().span())`` and +``strict_quotient`` are actually equivalent:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=6) + sage: K1 = _restrict_to_subspace(K, K.dual().span()) + sage: K2 = K.strict_quotient() + sage: _look_isomorphic(K1,K2) + True """ @@ -146,7 +466,7 @@ combinations of parameters:: ....: solid=True) sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular') sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice()) - sage: lyapunov_rank(K1) == lyapunov_rank(K2) + sage: K1.lyapunov_rank() == K2.lyapunov_rank() True :: @@ -156,7 +476,7 @@ combinations of parameters:: ....: solid=False) sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular') sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice()) - sage: lyapunov_rank(K1) == lyapunov_rank(K2) + sage: K1.lyapunov_rank() == K2.lyapunov_rank() True :: @@ -166,7 +486,7 @@ combinations of parameters:: ....: solid=True) sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular') sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice()) - sage: lyapunov_rank(K1) == lyapunov_rank(K2) + sage: K1.lyapunov_rank() == K2.lyapunov_rank() True :: @@ -176,7 +496,7 @@ combinations of parameters:: ....: solid=False) sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular') sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice()) - sage: lyapunov_rank(K1) == lyapunov_rank(K2) + sage: K1.lyapunov_rank() == K2.lyapunov_rank() True The Lyapunov rank of a dual cone should be the same as the original @@ -186,7 +506,7 @@ cone. Check all combinations of parameters:: sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=False, ....: solid=False) - sage: lyapunov_rank(K) == lyapunov_rank(K.dual()) + sage: K.lyapunov_rank() == K.dual().lyapunov_rank() True :: @@ -195,7 +515,7 @@ cone. Check all combinations of parameters:: sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=False, ....: solid=True) - sage: lyapunov_rank(K) == lyapunov_rank(K.dual()) + sage: K.lyapunov_rank() == K.dual().lyapunov_rank() True :: @@ -204,7 +524,7 @@ cone. Check all combinations of parameters:: sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=True, ....: solid=False) - sage: lyapunov_rank(K) == lyapunov_rank(K.dual()) + sage: K.lyapunov_rank() == K.dual().lyapunov_rank() True :: @@ -213,7 +533,7 @@ cone. Check all combinations of parameters:: sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=True, ....: solid=True) - sage: lyapunov_rank(K) == lyapunov_rank(K.dual()) + sage: K.lyapunov_rank() == K.dual().lyapunov_rank() True The Lyapunov rank of a cone ``K`` is the dimension of @@ -223,7 +543,7 @@ The Lyapunov rank of a cone ``K`` is the dimension of sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=True, ....: solid=True) - sage: lyapunov_rank(K) == len(K.lyapunov_like_basis()) + sage: K.lyapunov_rank() == len(K.lyapunov_like_basis()) True :: @@ -232,7 +552,7 @@ The Lyapunov rank of a cone ``K`` is the dimension of sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=True, ....: solid=False) - sage: lyapunov_rank(K) == len(K.lyapunov_like_basis()) + sage: K.lyapunov_rank() == len(K.lyapunov_like_basis()) True :: @@ -241,7 +561,7 @@ The Lyapunov rank of a cone ``K`` is the dimension of sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=False, ....: solid=True) - sage: lyapunov_rank(K) == len(K.lyapunov_like_basis()) + sage: K.lyapunov_rank() == len(K.lyapunov_like_basis()) True :: @@ -250,7 +570,7 @@ The Lyapunov rank of a cone ``K`` is the dimension of sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=False, ....: solid=False) - sage: lyapunov_rank(K) == len(K.lyapunov_like_basis()) + sage: K.lyapunov_rank() == len(K.lyapunov_like_basis()) True """