X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Fcone%2Fschur.py;h=3903b2bc8e346aa824c93d5acb14ad5efa6613de;hb=3de09687eda60668146db73602d368be4ef4f853;hp=bea76b6f91f00d688690b283d54091c7f014e87e;hpb=4f05d94f49ebe477fb310cee9e62ab1052932a04;p=sage.d.git diff --git a/mjo/cone/schur.py b/mjo/cone/schur.py index bea76b6..3903b2b 100644 --- a/mjo/cone/schur.py +++ b/mjo/cone/schur.py @@ -1,45 +1,88 @@ """ The Schur cone, as described in the "Critical angles..." papers by -Seeger and Sossa. +Iusem, Seeger, and Sossa. It defines the Schur ordering on `R^{n}`. """ from sage.all import * -def is_pointed(P,Q): - newP = Cone([ list(p) for p in P ]) - newQ = Cone([ list(q) for q in Q ]) - return newP.intersection(-newQ).is_trivial() - -def ext_angles(P,Q): - angles = [] - for p in P: - for q in Q: - p = vector(SR, p) - q = vector(SR, q) - p = p/p.norm() - q = q/q.norm() - angles.append(arccos(p.inner_product(q))) - - return angles - -def schur(n): +def schur_cone(n): r""" Return the Schur cone in ``n`` dimensions. INPUT: - - ``n`` -- the ambient dimension of the Schur cone and its ambient space. + - ``n`` -- the dimension the ambient space. OUTPUT: A rational closed convex Schur cone of dimension ``n``. + + REFERENCES: + + .. [IusemSeegerOnPairs] Alfredo Iusem and Alberto Seeger. + On pairs of vectors achieving the maximal angle of a convex cone. + Mathematical Programming, 104(2-3):501-523, 2005, + doi:10.1007/s10107-005-0626-z. + + .. [SeegerSossaI] Alberto Seeger and David Sossa. + Critical angles between two convex cones I. General theory. + TOP, 24(1):44-65, 2016, doi:10.1007/s11750-015-0375-y. + + SETUP:: + + sage: from mjo.cone.nonnegative_orthant import nonnegative_orthant + sage: from mjo.cone.schur import schur_cone + + EXAMPLES: + + Verify the claim that the maximal angle between any two generators + of the Schur cone and the nonnegative quintant is ``3*pi/4``:: + + sage: P = schur_cone(5) + sage: Q = nonnegative_orthant(5) + sage: G = [ g.change_ring(QQbar).normalized() for g in P ] + sage: H = [ h.change_ring(QQbar).normalized() for h in Q ] + sage: actual = max([arccos(u.inner_product(v)) for u in G for v in H]) + sage: expected = 3*pi/4 + sage: abs(actual - expected).n() < 1e-12 + True + + TESTS: + + We get the trivial cone when ``n`` is zero:: + + sage: schur_cone(0).is_trivial() + True + + The Schur cone induces the majorization ordering:: + + sage: set_random_seed() + sage: def majorized_by(x,y): + ....: return (all(sum(x[0:i]) <= sum(y[0:i]) + ....: for i in range(x.degree()-1)) + ....: and sum(x) == sum(y)) + sage: n = ZZ.random_element(10) + sage: V = VectorSpace(QQ, n) + sage: S = schur_cone(n) + sage: majorized_by(V.zero(), S.random_element()) + True + sage: x = V.random_element() + sage: y = V.random_element() + sage: majorized_by(x,y) == ( (y-x) in S ) + True + """ - hs = [] - for i in range(1,n): - h_i = [0]*n - h_i[i-1] = QQ(1) - h_i[i] = -QQ(1) - hs.append(vector(QQ,n,h_i)) + def _f(i,j): + if i == j: + return 1 + elif j - i == 1: + return -1 + else: + return 0 + + # The "max" below catches the trivial case where n == 0. + S = matrix(ZZ, max(0,n-1), n, _f) - return Cone(hs) + # Likewise, when n == 0, we need to specify the lattice. + return Cone(S.rows(), ToricLattice(n))