X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Fcone%2Frearrangement.py;h=0bbf95bb7603bed819d4b9e91a4b148856dc464c;hb=928b7d49fda98ff105c92293b5797bb7a2b9873a;hp=3e09c8ad948a8c70135809b6e3c5e5328babfa36;hpb=6e240259a6453b592c136242b4c1738c24c35aed;p=sage.d.git diff --git a/mjo/cone/rearrangement.py b/mjo/cone/rearrangement.py index 3e09c8a..0bbf95b 100644 --- a/mjo/cone/rearrangement.py +++ b/mjo/cone/rearrangement.py @@ -36,20 +36,26 @@ def rearrangement_cone(p,n,lattice=None): that lattice unless its rank is incompatible with the dimension ``n`` (in which case a ``ValueError`` is raised). - REFERENCES: + ALGORITHM: - .. [HenrionSeeger] Rene Henrion and Alberto Seeger. - Inradius and Circumradius of Various Convex Cones Arising in - Applications. Set-Valued and Variational Analysis, 18(3-4), - 483-511, 2010. doi:10.1007/s11228-010-0150-z + The generators for the rearrangement cone are given by [Jeong]_ + Theorem 5.2.3. + + REFERENCES: .. [GowdaJeong] Muddappa Seetharama Gowda and Juyoung Jeong. Spectral cones in Euclidean Jordan algebras. Linear Algebra and its Applications, 509, 286-305. doi:10.1016/j.laa.2016.08.004 + .. [HenrionSeeger] Rene Henrion and Alberto Seeger. + Inradius and Circumradius of Various Convex Cones Arising in + Applications. Set-Valued and Variational Analysis, 18(3-4), + 483-511, 2010. doi:10.1007/s11228-010-0150-z + .. [Jeong] Juyoung Jeong. Spectral sets and functions on Euclidean Jordan algebras. + University of Maryland, Baltimore County, Ph.D. thesis, 2017. SETUP:: @@ -73,28 +79,31 @@ def rearrangement_cone(p,n,lattice=None): sage: rearrangement_cone(5,5).lineality() 4 - All rearrangement cones are proper:: + All rearrangement cones are proper when ``p`` is less than ``n`` by + [Jeong]_ Proposition 5.2.1:: sage: all( rearrangement_cone(p,n).is_proper() - ....: for n in xrange(10) - ....: for p in xrange(1, n) ) + ....: for n in range(10) + ....: for p in range(1, n) ) True The Lyapunov rank of the rearrangement cone of order ``p`` in ``n`` - dimensions is ``n`` for ``p == 1`` or ``p == n`` and one otherwise:: + dimensions is ``n`` for ``p == 1`` or ``p == n`` and one otherwise, + by [Jeong]_ Corollary 5.2.4:: sage: all( rearrangement_cone(p,n).lyapunov_rank() == n - ....: for n in xrange(2, 10) + ....: for n in range(2, 10) ....: for p in [1, n-1] ) True sage: all( rearrangement_cone(p,n).lyapunov_rank() == 1 - ....: for n in xrange(3, 10) - ....: for p in xrange(2, n-1) ) + ....: for n in range(3, 10) + ....: for p in range(2, n-1) ) True TESTS: - The rearrangement cone is permutation-invariant:: + All rearrangement cones are permutation-invariant by [Jeong]_ + Proposition 5.2.1:: sage: n = ZZ.random_element(2,10).abs() sage: p = ZZ.random_element(1,n) @@ -107,22 +116,20 @@ def rearrangement_cone(p,n,lattice=None): cone should sum to a nonnegative number (this tests that the generators really are what we think they are):: - sage: set_random_seed() sage: def _has_rearrangement_property(v,p): ....: return sum( sorted(v)[0:p] ) >= 0 sage: all( _has_rearrangement_property( ....: rearrangement_cone(p,n).random_element(), ....: p ....: ) - ....: for n in xrange(2, 10) - ....: for p in xrange(1, n-1) + ....: for n in range(2, 10) + ....: for p in range(1, n-1) ....: ) True - The rearrangenent cone of order ``p`` is contained in the - rearrangement cone of order ``p + 1``:: + The rearrangenent cone of order ``p`` is contained in the rearrangement + cone of order ``p + 1`` by [Jeong]_ Proposition 5.2.1:: - sage: set_random_seed() sage: n = ZZ.random_element(2,10) sage: p = ZZ.random_element(1,n) sage: K1 = rearrangement_cone(p,n) @@ -130,6 +137,18 @@ def rearrangement_cone(p,n,lattice=None): sage: all( x in K2 for x in K1 ) True + The rearrangement cone of order ``p`` is linearly isomorphic to the + rearrangement cone of order ``n - p`` when ``p`` is less than ``n``, + by [Jeong]_ Proposition 5.2.1:: + + sage: n = ZZ.random_element(2,10) + sage: p = ZZ.random_element(1,n) + sage: K1 = rearrangement_cone(p,n) + sage: K2 = rearrangement_cone(n-p, n) + sage: Mp = (1/p)*matrix.ones(QQ,n) - identity_matrix(QQ,n) + sage: Cone( (Mp*K2.rays()).columns() ).is_equivalent(K1) + True + The order ``p`` should be between ``1`` and ``n``, inclusive:: sage: rearrangement_cone(0,3)