X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Fcone%2Ffaces.py;h=70706a8ca82383c25d98a17d28a333d8d942f83a;hb=d1017f501eb2058908a409818f143d2376863aa6;hp=8e5f2436c47802f4e8c61fbb2166f44d7370537d;hpb=c00b0cce43e8345d88097c74a3421f71e3b45e2b;p=sage.d.git diff --git a/mjo/cone/faces.py b/mjo/cone/faces.py index 8e5f243..70706a8 100644 --- a/mjo/cone/faces.py +++ b/mjo/cone/faces.py @@ -1,5 +1,6 @@ from sage.all import * + def face_generated_by(K,S): r""" Return the intersection of all faces of ``K`` that contain ``S``. @@ -130,3 +131,95 @@ def face_generated_by(K,S): raise ValueError('S is not a subset of the cone') else: return face_lattice.sorted(candidates)[0] + + +def dual_face(K,F): + r""" + Return the dual face of ``F`` with respect to the cone ``K``. + + OUTPUT: + + A face of ``K.dual()``. + + REFERENCES: + + .. [HilgertHofmannLawson] Joachim Hilgert, Karl Heinrich Hofmann, and Jimmie + D. Lawson. Lie groups, convex cones and semigroups. Oxford Mathematical + Monographs. Clarendon Press, Oxford, 1989. ISBN 9780198535690. + + .. [Tam] Bit-Shun Tam. On the duality operator of a convex cone. Linear + Algebra and its Applications, 64:33-56, 1985, doi:10.1016/0024-3795(85) + 90265-4. + + SETUP:: + + sage: from mjo.cone.faces import (dual_face, face_generated_by) + + EXAMPLES: + + The dual face of the first standard basis vector in three dimensions + is the face generated by the other two standard basis vectors:: + + sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)]) + sage: F = Cone([(1,0,0)]) + sage: dual_face(K,F).rays() + M(0, 0, 1), + M(0, 1, 0) + in 3-d lattice M + + TESTS: + + The dual face of ``K`` with respect to itself should be the + lineality space of its dual [Tam]_:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=8, max_rays=10) + sage: K_dual = K.dual() + sage: lKd_gens = [ dir*l for dir in [1,-1] for l in K_dual.lines() ] + sage: linspace_K_dual = Cone(lKd_gens, K_dual.lattice()) + sage: dual_face(K,K).is_equivalent(linspace_K_dual) + True + + If ``K`` is proper, then the dual face of its trivial face is the + dual of ``K`` [Tam]_:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=8, + ....: max_rays=10, + ....: strictly_convex=True, + ....: solid=True) + sage: L = K.lattice() + sage: trivial_face = Cone([L.zero()], L) + sage: dual_face(K,trivial_face).is_equivalent(K.dual()) + True + + The dual of the cone of ``K`` at ``y`` is the dual face of the face + of ``K`` generated by ``y`` ([Tam]_ Corollary 3.2):: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=8, max_rays=10) + sage: y = K.random_element() + sage: S = [y] + sage: phi_y = face_generated_by(K,S) + sage: points_cone_gens = list(K.rays()) + [-z for z in phi_y.rays()] + sage: points_cone = Cone(points_cone_gens, K.lattice()) + sage: points_cone.dual().is_equivalent(dual_face(K, phi_y)) + True + + Since all faces of a polyhedral cone are exposed, the dual face of a + dual face should be the original face [HilgertHofmannLawson]_:: + + sage: set_random_seed() + sage: def check_prop(K,F): + ....: return dual_face(K.dual(), dual_face(K,F)).is_equivalent(F) + sage: K = random_cone(max_ambient_dim=8, max_rays=10) + sage: all([check_prop(K,F) for F in K.face_lattice()]) + True + + """ + # Ensure that F is actually a face of K before continuing. + if not F.is_face_of(K): + raise ValueError("%s is not a face of %s" % (F,K)) + + span_F = Cone([c*g for c in [1,-1] for g in F], F.lattice()) + return K.dual().intersection(span_F.dual())