X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Fcone%2Fcone.py;h=ff7d195d134c15943dbb75c1f26b741bb4a0afba;hb=10142e85f34c47fa35df002f519d1d58a79a74f4;hp=a5482b3aa95f7198938007c4be615c4e7a97e17d;hpb=b97553aaaf9734644bee13bf484014f817456b26;p=sage.d.git diff --git a/mjo/cone/cone.py b/mjo/cone/cone.py index a5482b3..ff7d195 100644 --- a/mjo/cone/cone.py +++ b/mjo/cone/cone.py @@ -8,6 +8,212 @@ addsitedir(abspath('../../')) from sage.all import * +def project_span(K): + r""" + Project ``K`` into its own span. + + EXAMPLES:: + + sage: K = Cone([(1,)]) + sage: project_span(K) == K + True + + sage: K2 = Cone([(1,0)]) + sage: project_span(K2).rays() + N(1) + in 1-d lattice N + sage: K3 = Cone([(1,0,0)]) + sage: project_span(K3).rays() + N(1) + in 1-d lattice N + sage: project_span(K2) == project_span(K3) + True + + TESTS: + + The projected cone should always be solid:: + + sage: K = random_cone(max_dim = 10) + sage: K_S = project_span(K) + sage: K_S.is_solid() + True + + If we do this according to our paper, then the result is proper:: + + sage: K = random_cone(max_dim = 10) + sage: K_S = project_span(K) + sage: P = project_span(K_S.dual()).dual() + sage: P.is_proper() + True + + """ + L = K.lattice() + F = L.base_field() + Q = L.quotient(K.sublattice_complement()) + vecs = [ vector(F, reversed(list(Q(r)))) for r in K.rays() ] + + newL = None + if len(vecs) == 0: + newL = ToricLattice(0) + + return Cone(vecs, lattice=newL) + + + +def lineality(K): + r""" + Compute the lineality of this cone. + + The lineality of a cone is the dimension of the largest linear + subspace contained in that cone. + + OUTPUT: + + A nonnegative integer; the dimension of the largest subspace + contained within this cone. + + REFERENCES: + + .. [Rockafellar] R.T. Rockafellar. Convex Analysis. Princeton + University Press, Princeton, 1970. + + EXAMPLES: + + The lineality of the nonnegative orthant is zero, since it clearly + contains no lines:: + + sage: K = Cone([(1,0,0), (0,1,0), (0,0,1)]) + sage: lineality(K) + 0 + + However, if we add another ray so that the entire `x`-axis belongs + to the cone, then the resulting cone will have lineality one:: + + sage: K = Cone([(1,0,0), (-1,0,0), (0,1,0), (0,0,1)]) + sage: lineality(K) + 1 + + If our cone is all of `\mathbb{R}^{2}`, then its lineality is equal + to the dimension of the ambient space (i.e. two):: + + sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)]) + sage: lineality(K) + 2 + + Per the definition, the lineality of the trivial cone in a trivial + space is zero:: + + sage: K = Cone([], lattice=ToricLattice(0)) + sage: lineality(K) + 0 + + TESTS: + + The lineality of a cone should be an integer between zero and the + dimension of the ambient space, inclusive:: + + sage: K = random_cone(max_dim = 10) + sage: l = lineality(K) + sage: l in ZZ + True + sage: (0 <= l) and (l <= K.lattice_dim()) + True + + A strictly convex cone should have lineality zero:: + + sage: K = random_cone(max_dim = 10, strictly_convex = True) + sage: lineality(K) + 0 + + """ + return K.linear_subspace().dimension() + + +def codim(K): + r""" + Compute the codimension of this cone. + + The codimension of a cone is the dimension of the space of all + elements perpendicular to every element of the cone. In other words, + the codimension is the difference between the dimension of the + ambient space and the dimension of the cone itself. + + OUTPUT: + + A nonnegative integer representing the dimension of the space of all + elements perpendicular to this cone. + + .. seealso:: + + :meth:`dim`, :meth:`lattice_dim` + + EXAMPLES: + + The codimension of the nonnegative orthant is zero, since the span of + its generators equals the entire ambient space:: + + sage: K = Cone([(1,0,0), (0,1,0), (0,0,1)]) + sage: codim(K) + 0 + + However, if we remove a ray so that the entire cone is contained + within the `x-y`-plane, then the resulting cone will have + codimension one, because the `z`-axis is perpendicular to every + element of the cone:: + + sage: K = Cone([(1,0,0), (0,1,0)]) + sage: codim(K) + 1 + + If our cone is all of `\mathbb{R}^{2}`, then its codimension is zero:: + + sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)]) + sage: codim(K) + 0 + + And if the cone is trivial in any space, then its codimension is + equal to the dimension of the ambient space:: + + sage: K = Cone([], lattice=ToricLattice(0)) + sage: codim(K) + 0 + + sage: K = Cone([(0,)]) + sage: codim(K) + 1 + + sage: K = Cone([(0,0)]) + sage: codim(K) + 2 + + TESTS: + + The codimension of a cone should be an integer between zero and + the dimension of the ambient space, inclusive:: + + sage: K = random_cone(max_dim = 10) + sage: c = codim(K) + sage: c in ZZ + True + sage: (0 <= c) and (c <= K.lattice_dim()) + True + + A solid cone should have codimension zero:: + + sage: K = random_cone(max_dim = 10, solid = True) + sage: codim(K) + 0 + + The codimension of a cone is equal to the lineality of its dual:: + + sage: K = random_cone(max_dim = 10, solid = True) + sage: codim(K) == lineality(K.dual()) + True + + """ + return (K.lattice_dim() - K.dim()) + + def discrete_complementarity_set(K): r""" Compute the discrete complementarity set of this cone. @@ -87,15 +293,77 @@ def LL(K): OUTPUT: - A ``MatrixSpace`` object `M` such that every matrix `L \in M` is - Lyapunov-like on this cone. + A list of matrices forming a basis for the space of all + Lyapunov-like transformations on the given cone. + + EXAMPLES: + + The trivial cone has no Lyapunov-like transformations:: + + sage: L = ToricLattice(0) + sage: K = Cone([], lattice=L) + sage: LL(K) + [] + + The Lyapunov-like transformations on the nonnegative orthant are + simply diagonal matrices:: + + sage: K = Cone([(1,)]) + sage: LL(K) + [[1]] + + sage: K = Cone([(1,0),(0,1)]) + sage: LL(K) + [ + [1 0] [0 0] + [0 0], [0 1] + ] + + sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)]) + sage: LL(K) + [ + [1 0 0] [0 0 0] [0 0 0] + [0 0 0] [0 1 0] [0 0 0] + [0 0 0], [0 0 0], [0 0 1] + ] + + Only the identity matrix is Lyapunov-like on the `L^{3}_{1}` and + `L^{3}_{\infty}` cones [Rudolf et al.]_:: + + sage: L31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)]) + sage: LL(L31) + [ + [1 0 0] + [0 1 0] + [0 0 1] + ] + + sage: L3infty = Cone([(0,1,1), (1,0,1), (0,-1,1), (-1,0,1)]) + sage: LL(L3infty) + [ + [1 0 0] + [0 1 0] + [0 0 1] + ] + + TESTS: + + The inner product `\left< L\left(x\right), s \right>` is zero for + every pair `\left( x,s \right)` in the discrete complementarity set + of the cone:: + + sage: K = random_cone(max_dim=8, max_rays=10) + sage: C_of_K = discrete_complementarity_set(K) + sage: l = [ (L*x).inner_product(s) for (x,s) in C_of_K for L in LL(K) ] + sage: sum(map(abs, l)) + 0 """ V = K.lattice().vector_space() C_of_K = discrete_complementarity_set(K) - matrices = [x.tensor_product(s) for (x,s) in C_of_K] + tensor_products = [s.tensor_product(x) for (x,s) in C_of_K] # Sage doesn't think matrices are vectors, so we have to convert # our matrices to vectors explicitly before we can figure out how @@ -108,7 +376,7 @@ def LL(K): W = VectorSpace(V.base_ring(), V.dimension()**2) # Turn our matrices into long vectors... - vectors = [ W(m.list()) for m in matrices ] + vectors = [ W(m.list()) for m in tensor_products ] # Vector space representation of Lyapunov-like matrices # (i.e. vec(L) where L is Luapunov-like). @@ -118,9 +386,9 @@ def LL(K): # transformations. M = MatrixSpace(V.base_ring(), V.dimension()) - matrices = [ M(v.list()) for v in LL_vector.basis() ] + matrix_basis = [ M(v.list()) for v in LL_vector.basis() ] - return matrices + return matrix_basis @@ -171,6 +439,9 @@ def lyapunov_rank(K): cone and Lyapunov-like transformations, Mathematical Programming, 147 (2014) 155-170. + .. [Orlitzky/Gowda] M. Orlitzky and M. S. Gowda. The Lyapunov Rank of an + Improper Cone. Work in-progress. + .. [Rudolf et al.] G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh, Bilinear optimality constraints for the cone of positive polynomials, Mathematical Programming, Series B, 129 (2011) 5-31. @@ -190,6 +461,15 @@ def lyapunov_rank(K): sage: lyapunov_rank(octant) 3 + The full space `\mathbb{R}^{n}` has Lyapunov rank `n^{2}` + [Orlitzky/Gowda]_:: + + sage: R5 = VectorSpace(QQ, 5) + sage: gens = R5.basis() + [ -r for r in R5.basis() ] + sage: K = Cone(gens) + sage: lyapunov_rank(K) + 25 + The `L^{3}_{1}` cone is known to have a Lyapunov rank of one [Rudolf et al.]_:: @@ -203,7 +483,30 @@ def lyapunov_rank(K): sage: lyapunov_rank(L3infty) 1 - The Lyapunov rank should be additive on a product of cones + A single ray in `n` dimensions should have Lyapunov rank `n^{2} - n + + 1` [Orlitzky/Gowda]_:: + + sage: K = Cone([(1,0,0,0,0)]) + sage: lyapunov_rank(K) + 21 + sage: K.lattice_dim()**2 - K.lattice_dim() + 1 + 21 + + A subspace (of dimension `m`) in `n` dimensions should have a + Lyapunov rank of `n^{2} - m\left(n - m)` [Orlitzky/Gowda]_:: + + sage: e1 = (1,0,0,0,0) + sage: neg_e1 = (-1,0,0,0,0) + sage: e2 = (0,1,0,0,0) + sage: neg_e2 = (0,-1,0,0,0) + sage: zero = (0,0,0,0,0) + sage: K = Cone([e1, neg_e1, e2, neg_e2, zero, zero, zero]) + sage: lyapunov_rank(K) + 19 + sage: K.lattice_dim()**2 - K.dim()*codim(K) + 19 + + The Lyapunov rank should be additive on a product of proper cones [Rudolf et al.]_:: sage: L31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)]) @@ -229,11 +532,11 @@ def lyapunov_rank(K): TESTS: - The Lyapunov rank should be additive on a product of cones + The Lyapunov rank should be additive on a product of proper cones [Rudolf et al.]_:: - sage: K1 = random_cone(max_dim=10, max_rays=10) - sage: K2 = random_cone(max_dim=10, max_rays=10) + sage: K1 = random_cone(max_dim=10, strictly_convex=True, solid=True) + sage: K2 = random_cone(max_dim=10, strictly_convex=True, solid=True) sage: K = K1.cartesian_product(K2) sage: lyapunov_rank(K) == lyapunov_rank(K1) + lyapunov_rank(K2) True @@ -247,40 +550,66 @@ def lyapunov_rank(K): The Lyapunov rank of a proper polyhedral cone in `n` dimensions can be any number between `1` and `n` inclusive, excluding `n-1` - [Gowda/Tao]_ (by accident, this holds for the trivial cone in a - trivial space as well):: + [Gowda/Tao]_. By accident, the `n-1` restriction will hold for the + trivial cone in a trivial space as well. However, in zero dimensions, + the Lyapunov rank of the trivial cone will be zero:: sage: K = random_cone(max_dim=10, strictly_convex=True, solid=True) sage: b = lyapunov_rank(K) sage: n = K.lattice_dim() - sage: 1 <= b and b <= n + sage: (n == 0 or 1 <= b) and b <= n True sage: b == n-1 False + In fact [Orlitzky/Gowda]_, no closed convex polyhedral cone can have + Lyapunov rank `n-1` in `n` dimensions:: + + sage: K = random_cone(max_dim=10) + sage: b = lyapunov_rank(K) + sage: n = K.lattice_dim() + sage: b == n-1 + False + + The calculation of the Lyapunov rank of an improper cone can be + reduced to that of a proper cone [Orlitzky/Gowda]_:: + + sage: K = random_cone(max_dim=10) + sage: actual = lyapunov_rank(K) + sage: K_S = project_span(K) + sage: P = project_span(K_S.dual()).dual() + sage: l = lineality(K) + sage: c = codim(K) + sage: expected = lyapunov_rank(P) + K.dim()*(l + c) + c**2 + sage: actual == expected + True + + The Lyapunov rank of a proper cone is just the dimension of ``LL(K)``:: + + sage: K = random_cone(max_dim=10, strictly_convex=True, solid=True) + sage: lyapunov_rank(K) == len(LL(K)) + True + """ - V = K.lattice().vector_space() + beta = 0 - C_of_K = discrete_complementarity_set(K) + m = K.dim() + n = K.lattice_dim() + l = lineality(K) - matrices = [x.tensor_product(s) for (x,s) in C_of_K] + if m < n: + # K is not solid, project onto its span. + K = project_span(K) - # Sage doesn't think matrices are vectors, so we have to convert - # our matrices to vectors explicitly before we can figure out how - # many are linearly-indepenedent. - # - # The space W has the same base ring as V, but dimension - # dim(V)^2. So it has the same dimension as the space of linear - # transformations on V. In other words, it's just the right size - # to create an isomorphism between it and our matrices. - W = VectorSpace(V.base_ring(), V.dimension()**2) + # Lemma 2 + beta += m*(n - m) + (n - m)**2 - def phi(m): - r""" - Convert a matrix to a vector isomorphically. - """ - return W(m.list()) + if l > 0: + # K is not pointed, project its dual onto its span. + K = project_span(K.dual()).dual() - vectors = [phi(m) for m in matrices] + # Lemma 3 + beta += m * l - return (W.dimension() - W.span(vectors).rank()) + beta += len(LL(K)) + return beta