X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Fcone%2Fcone.py;h=ff7d195d134c15943dbb75c1f26b741bb4a0afba;hb=10142e85f34c47fa35df002f519d1d58a79a74f4;hp=421fb3c8f04abb23fd420271ed10e0a7e65815d4;hpb=f8e779ee533992a940e1014d00960fc58c3c4b79;p=sage.d.git diff --git a/mjo/cone/cone.py b/mjo/cone/cone.py index 421fb3c..ff7d195 100644 --- a/mjo/cone/cone.py +++ b/mjo/cone/cone.py @@ -60,6 +60,160 @@ def project_span(K): +def lineality(K): + r""" + Compute the lineality of this cone. + + The lineality of a cone is the dimension of the largest linear + subspace contained in that cone. + + OUTPUT: + + A nonnegative integer; the dimension of the largest subspace + contained within this cone. + + REFERENCES: + + .. [Rockafellar] R.T. Rockafellar. Convex Analysis. Princeton + University Press, Princeton, 1970. + + EXAMPLES: + + The lineality of the nonnegative orthant is zero, since it clearly + contains no lines:: + + sage: K = Cone([(1,0,0), (0,1,0), (0,0,1)]) + sage: lineality(K) + 0 + + However, if we add another ray so that the entire `x`-axis belongs + to the cone, then the resulting cone will have lineality one:: + + sage: K = Cone([(1,0,0), (-1,0,0), (0,1,0), (0,0,1)]) + sage: lineality(K) + 1 + + If our cone is all of `\mathbb{R}^{2}`, then its lineality is equal + to the dimension of the ambient space (i.e. two):: + + sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)]) + sage: lineality(K) + 2 + + Per the definition, the lineality of the trivial cone in a trivial + space is zero:: + + sage: K = Cone([], lattice=ToricLattice(0)) + sage: lineality(K) + 0 + + TESTS: + + The lineality of a cone should be an integer between zero and the + dimension of the ambient space, inclusive:: + + sage: K = random_cone(max_dim = 10) + sage: l = lineality(K) + sage: l in ZZ + True + sage: (0 <= l) and (l <= K.lattice_dim()) + True + + A strictly convex cone should have lineality zero:: + + sage: K = random_cone(max_dim = 10, strictly_convex = True) + sage: lineality(K) + 0 + + """ + return K.linear_subspace().dimension() + + +def codim(K): + r""" + Compute the codimension of this cone. + + The codimension of a cone is the dimension of the space of all + elements perpendicular to every element of the cone. In other words, + the codimension is the difference between the dimension of the + ambient space and the dimension of the cone itself. + + OUTPUT: + + A nonnegative integer representing the dimension of the space of all + elements perpendicular to this cone. + + .. seealso:: + + :meth:`dim`, :meth:`lattice_dim` + + EXAMPLES: + + The codimension of the nonnegative orthant is zero, since the span of + its generators equals the entire ambient space:: + + sage: K = Cone([(1,0,0), (0,1,0), (0,0,1)]) + sage: codim(K) + 0 + + However, if we remove a ray so that the entire cone is contained + within the `x-y`-plane, then the resulting cone will have + codimension one, because the `z`-axis is perpendicular to every + element of the cone:: + + sage: K = Cone([(1,0,0), (0,1,0)]) + sage: codim(K) + 1 + + If our cone is all of `\mathbb{R}^{2}`, then its codimension is zero:: + + sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)]) + sage: codim(K) + 0 + + And if the cone is trivial in any space, then its codimension is + equal to the dimension of the ambient space:: + + sage: K = Cone([], lattice=ToricLattice(0)) + sage: codim(K) + 0 + + sage: K = Cone([(0,)]) + sage: codim(K) + 1 + + sage: K = Cone([(0,0)]) + sage: codim(K) + 2 + + TESTS: + + The codimension of a cone should be an integer between zero and + the dimension of the ambient space, inclusive:: + + sage: K = random_cone(max_dim = 10) + sage: c = codim(K) + sage: c in ZZ + True + sage: (0 <= c) and (c <= K.lattice_dim()) + True + + A solid cone should have codimension zero:: + + sage: K = random_cone(max_dim = 10, solid = True) + sage: codim(K) + 0 + + The codimension of a cone is equal to the lineality of its dual:: + + sage: K = random_cone(max_dim = 10, solid = True) + sage: codim(K) == lineality(K.dual()) + True + + """ + return (K.lattice_dim() - K.dim()) + + def discrete_complementarity_set(K): r""" Compute the discrete complementarity set of this cone. @@ -349,7 +503,7 @@ def lyapunov_rank(K): sage: K = Cone([e1, neg_e1, e2, neg_e2, zero, zero, zero]) sage: lyapunov_rank(K) 19 - sage: K.lattice_dim()**2 - K.dim()*(K.lattice_dim() - K.dim()) + sage: K.lattice_dim()**2 - K.dim()*codim(K) 19 The Lyapunov rank should be additive on a product of proper cones @@ -424,9 +578,9 @@ def lyapunov_rank(K): sage: actual = lyapunov_rank(K) sage: K_S = project_span(K) sage: P = project_span(K_S.dual()).dual() - sage: l = K.linear_subspace().dimension() - sage: codim = K.lattice_dim() - K.dim() - sage: expected = lyapunov_rank(P) + K.dim()*(l + codim) + codim**2 + sage: l = lineality(K) + sage: c = codim(K) + sage: expected = lyapunov_rank(P) + K.dim()*(l + c) + c**2 sage: actual == expected True @@ -441,7 +595,7 @@ def lyapunov_rank(K): m = K.dim() n = K.lattice_dim() - l = K.linear_subspace().dimension() + l = lineality(K) if m < n: # K is not solid, project onto its span.