X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Fcone%2Fcone.py;h=cd835a764f9baf7fd8dd2082aa948501610698f5;hb=dbef443b13d185940629eb870fc93f55cb5a70a3;hp=3f915ed66fb4ea33629bc1c30ff4e021f59f8607;hpb=d3dd6210c93ee4ea0fbeb8e643649a0ab958c796;p=sage.d.git diff --git a/mjo/cone/cone.py b/mjo/cone/cone.py index 3f915ed..cd835a7 100644 --- a/mjo/cone/cone.py +++ b/mjo/cone/cone.py @@ -76,7 +76,7 @@ def _basically_the_same(K1, K2): if K1.is_strictly_convex() != K2.is_strictly_convex(): return False - if len(K1.LL()) != len(K2.LL()): + if len(K1.lyapunov_like_basis()) != len(K2.lyapunov_like_basis()): return False C_of_K1 = K1.discrete_complementarity_set() @@ -414,11 +414,12 @@ def lyapunov_rank(K): sage: actual == expected True - The Lyapunov rank of any cone is just the dimension of ``K.LL()``:: + The Lyapunov rank of any cone is just the dimension of + ``K.lyapunov_like_basis()``:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8) - sage: lyapunov_rank(K) == len(K.LL()) + sage: lyapunov_rank(K) == len(K.lyapunov_like_basis()) True We can make an imperfect cone perfect by adding a slack variable @@ -456,7 +457,7 @@ def lyapunov_rank(K): # Non-pointed reduction lemma. beta += l * m - beta += len(K.LL()) + beta += len(K.lyapunov_like_basis()) return beta @@ -514,10 +515,11 @@ def is_lyapunov_like(L,K): sage: is_lyapunov_like(L,K) True - Everything in ``K.LL()`` should be Lyapunov-like on ``K``:: + Everything in ``K.lyapunov_like_basis()`` should be Lyapunov-like + on ``K``:: sage: K = random_cone(min_ambient_dim = 1, max_rays = 5) - sage: all([is_lyapunov_like(L,K) for L in K.LL()]) + sage: all([ is_lyapunov_like(L,K) for L in K.lyapunov_like_basis() ]) True """ @@ -670,3 +672,104 @@ def positive_operators(K): M = MatrixSpace(V.base_ring(), V.dimension()) return [ M(v.list()) for v in pi_cone.rays() ] + + +def Z_transformations(K): + r""" + Compute generators of the cone of Z-transformations on this cone. + + OUTPUT: + + A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``. + Each matrix ``L`` in the list should have the property that + ``(L*x).inner_product(s) <= 0`` whenever ``(x,s)`` is an element the + discrete complementarity set of ``K``. Moreover, any nonnegative + linear combination of these matrices shares the same property. + + EXAMPLES: + + Z-transformations on the nonnegative orthant are just Z-matrices. + That is, matrices whose off-diagonal elements are nonnegative:: + + sage: K = Cone([(1,0),(0,1)]) + sage: Z_transformations(K) + [ + [ 0 -1] [ 0 0] [-1 0] [1 0] [ 0 0] [0 0] + [ 0 0], [-1 0], [ 0 0], [0 0], [ 0 -1], [0 1] + ] + sage: K = Cone([(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)]) + sage: all([ z[i][j] <= 0 for z in Z_transformations(K) + ....: for i in range(z.nrows()) + ....: for j in range(z.ncols()) + ....: if i != j ]) + True + + The trivial cone in a trivial space has no Z-transformations:: + + sage: K = Cone([], ToricLattice(0)) + sage: Z_transformations(K) + [] + + Z-transformations on a subspace are Lyapunov-like and vice-versa:: + + sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)]) + sage: K.is_full_space() + True + sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ]) + sage: zs = span([ vector(z.list()) for z in Z_transformations(K) ]) + sage: zs == lls + True + + TESTS: + + The Z-property is possessed by every Z-transformation:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim = 6) + sage: Z_of_K = Z_transformations(K) + sage: dcs = K.discrete_complementarity_set() + sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K + ....: for (x,s) in dcs]) + True + + The lineality space of Z is LL:: + + sage: set_random_seed() + sage: K = random_cone(min_ambient_dim = 1, max_ambient_dim = 6) + sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ]) + sage: z_cone = Cone([ z.list() for z in Z_transformations(K) ]) + sage: z_cone.linear_subspace() == lls + True + + """ + # Sage doesn't think matrices are vectors, so we have to convert + # our matrices to vectors explicitly before we can figure out how + # many are linearly-indepenedent. + # + # The space W has the same base ring as V, but dimension + # dim(V)^2. So it has the same dimension as the space of linear + # transformations on V. In other words, it's just the right size + # to create an isomorphism between it and our matrices. + V = K.lattice().vector_space() + W = VectorSpace(V.base_ring(), V.dimension()**2) + + C_of_K = K.discrete_complementarity_set() + tensor_products = [ s.tensor_product(x) for (x,s) in C_of_K ] + + # Turn our matrices into long vectors... + vectors = [ W(m.list()) for m in tensor_products ] + + # Create the *dual* cone of the cross-positive operators, + # expressed as long vectors.. + L = ToricLattice(W.dimension()) + Sigma_dual = Cone(vectors, lattice=L) + + # Now compute the desired cone from its dual... + Sigma_cone = Sigma_dual.dual() + + # And finally convert its rays back to matrix representations. + # But first, make them negative, so we get Z-transformations and + # not cross-positive ones. + M = MatrixSpace(V.base_ring(), V.dimension()) + + return [ -M(v.list()) for v in Sigma_cone.rays() ]